Двугранные углы равны если. Двугранный угол

Понятие двугранного угла

Для введения понятия двугранного угла, для начала вспомним одну из аксиом стереометрии.

Любую плоскость можно разделить на две полуплоскости прямой $a$, лежащей в этой плоскости. При этом, точки, лежащие в одной полуплоскости находятся с одной стороны от прямой $a$, а точки, лежащие в разных полуплоскостях -- по разные стороны от прямой $a$ (рис. 1).

Рисунок 1.

На этой аксиоме основан принцип построение двугранного угла.

Определение 1

Фигура называется двугранным углом , если она состоит из прямой и двух полуплоскостей этой прямой, не принадлежащих одной плоскости.

При этом полуплоскости двугранного угла называются гранями , а прямая, разделяющая полуплоскости -- ребром двугранного угла (рис. 1).

Рисунок 2. Двугранный угол

Градусная мера двугранного угла

Определение 2

Выберем на ребре произвольную точку $A$. Угол между двумя прямыми, лежащими в разных полуплоскостях, перпендикулярных ребру и пересекающихся в точке $A$ называется линейным углом двугранного угла (рис. 3).

Рисунок 3.

Очевидно, что каждый двугранный угол имеет бесконечное число линейных углов.

Теорема 1

Все линейные углы одного двугранного угла равняются между собой.

Доказательство.

Рассмотрим два линейных угла $AOB$ и $A_1{OB}_1$ (рис. 4).

Рисунок 4.

Так как лучи $OA$ и ${OA}_1$ лежат в одной полуплоскости $\alpha $ и перпендикулярны одной прямой, то они являются сонаправленными. Так как лучи $OB$ и ${OB}_1$ лежат в одной полуплоскости $\beta $ и перпендикулярны одной прямой, то они являются сонаправленными. Следовательно

\[\angle AOB=\angle A_1{OB}_1\]

В силу произвольности выборов линейных углов. Все линейные углы одного двугранного угла равны между собой.

Теорема доказана.

Определение 3

Градусной мерой двугранного угла называется градусная мера линейного угла двугранного угла.

Примеры задач

Пример 1

Пусть нам даны две неперпендикулярные плоскости $\alpha $ и $\beta $ которые пересекаются по прямой $m$. Точка $A$ принадлежит плоскости $\beta $. $AB$ -- перпендикуляр к прямой $m$. $AC$ перпендикуляр к плоскости $\alpha $ (точка $C$ принадлежит $\alpha $). Доказать, что угол $ABC$ является линейным углом двугранного угла.

Доказательство.

Изобразим рисунок по условию задачи (рис. 5).

Рисунок 5.

Для доказательства вспомним следующую теорему

Теорема 2: Прямая, проходящая через основание наклонной, перпендикулярно ей, перпендикулярна её проекции.

Так как $AC$ - перпендикуляр к плоскости $\alpha $, то точка $C$ - проекция точки $A$ на плоскость $\alpha $. Следовательно, $BC$ -- проекция наклонной $AB$. По теореме 2, $BC$ перпендикулярна ребру двугранного угла.

Тогда, угол $ABC$ удовлетворяет всем требованиям определения линейного угла двугранного угла.

Пример 2

Двугранный угол равен $30^\circ$. На одной из граней лежит точка $A$, которая удалена от другой грани на расстояние $4$ см. Найти расстояние от точки $A$ до ребра двугранного угла.

Решение.

Будем рассматривать рисунок 5.

По условию, имеем $AC=4\ см$.

По определению градусной меры двугранного угла, имеем, что угол $ABC$ равен $30^\circ$.

Треугольник $ABC$ является прямоугольным треугольником. По определению синуса острого угла

\[\frac{AC}{AB}=sin{30}^0\] \[\frac{5}{AB}=\frac{1}{2}\] \

















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: ввести понятие двугранного угла и его линейного угла;

  • рассмотреть задачи на применение этих понятий;
  • сформировать конструктивный навык нахождения угла между плоскостями;
  • рассмотреть задачи на применение этих понятий.
  • Ход урока

    I. Организационный момент.

    Сообщить тему урока, сформировать цели урока.

    II. Актуализация знаний учащихся (слайд 2, 3).

    1. Подготовка к изучению нового материала.

    Что называется углом на плоскости?

    Что называется углом между прямыми в пространстве?

    Что называется углом между прямой и плоскостью?

    Сформулируйте теорему о трех перпендикулярах

    III. Изучение нового материала.

    • Понятие двугранного угла.

    Фигура, образованная двумя полуплоскостями , проходящими через прямую МN, называется двугранным углом (слайд 4).

    Полуплоскости - грани, прямая МN – ребро двугранного угла.

    Какие предметы в обыденной жизни имеют форму двугранного угла? (Cлайд 5)

    • Угол между плоскостями АСН и СНD – это двугранный угол АСНD, где СН – ребро. Точки А и D лежат на гранях этого угла. Угол AFD – линейный угол двугранного угла АCHD (слайд 6).
    • Алгоритм построения линейного угла (слайд 7).

    1 способ. На ребре взять любую точку О и провести перпендикуляры в эту точку (РО DE, KO DE) получили угол РОК - линейный.

    2 способ. В одной полуплоскости взять точку К и опустить из нее два перпендикуляра на другую полуплоскость и ребро (КО и КР), тогда по теореме обратной ТТП РОDE

    • Все линейные углы двугранного угла равны (слайд 8). Доказательство: лучи ОА и О 1 А 1 сонаправлены, лучи ОВ и О 1 В 1 тоже сонаправлены, углы ВОА и В 1 О 1 А 1 равны как углы с сонаправлеными сторонами.
    • Градусной мерой двугранного угла называется градусная мера его линейного угла (слайд 9).

    IV. Закрепление изученного материала.

    • Решение задач (устно по готовым чертежам). (Слайды10-12)

    1. РАВС – пирамида; угол АСВ равен 90 о, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол РСВ – линейный угол двугранного угла с

    2. РАВС - пирамида; АВ = ВС, D – середина отрезка АС, прямая РВ перпендикулярна плоскости АВС. Доказать, что угол PDB – линейный угол двугранного угла с ребром АС.

    3. PABCD – пирамида; прямая РВ перпендикулярна плоскости АВС, ВК перпендикулярна DC. Доказать, что угол РКВ – линейный угол двугранного угла с ребром СD.

    • Задачи на построение линейного угла (слайды 13-14).

    1. Построить линейный угол двугранного угла с ребром АС, если в пирамиде РАВС грань АВС – правильный треугольник, О – точка пересечения медиан, прямая РО перпендикулярна плоскости АВС

    2. Дан ромб АВСD.Прямая РС перпендикулярна плоскости АВСD.

    Построить линейный угол двугранного угла с ребром ВD и линейный угол двугранного угла с ребром АD.

    • Вычислительная задача. (Слайд 15)

    В параллелограмме АВСD угол АDС равен 120 0 , АD = 8 см,

    DС= 6 см, прямая РС перпендикулярна плоскости АВС, РС= 9 см.

    Найти величину двугранного угла с ребром АD и площадь параллелограмма.

    V. Домашнее задание (слайд16).

    П. 22, № 168, 171.

    Используемая литература:

    1. Геометрия 10-11 Л.С.Атанасян.
    2. Система задач по теме “Двугранные углы” М.В.Севостьянова (г.Мурманск), журнал Математика в школе 198… г.

    В геометрии для изучения фигур используют две важные характеристики: длины сторон и углы между ними. В случае пространственных фигур к этим характеристиками добавляются двугранные углы. Рассмотрим, что это такое, а также опишем методику определения этих углов на примере пирамиды.

    Понятие о двугранном угле

    Каждый знает, что две пересекающиеся прямые образуют некоторый угол с вершиной в точке их пересечения. Этот угол можно измерить с помощью транспортира или воспользоваться тригонометрическими функциями для его вычисления. Образованный двумя прямыми угол называется линейным.

    Теперь представим, что в трехмерном пространстве имеется две плоскости, которые пересекаются по прямой. Они изображена на рисунке.

    Двугранным углом называется угол между двумя пересекающимися плоскостями. Так же как и линейный, он измеряется в градусах или радианах. Если к какой-либо точке прямой, по которой плоскости пересекаются, восстановить два перпендикуляра, лежащих в этих плоскостях, то угол между ними будет искомым двугранным. Определить этот угол проще всего, если воспользоваться уравнениями плоскостей в общем виде.

    Уравнение плоскостей и формула для угла между ними

    Уравнение любой плоскости в пространстве в общем виде записывается так:

    A × x + B × y + C × z + D = 0.

    Здесь x, y, z - это координаты точек, принадлежащих плоскости, коэффициенты A, B, C, D - некоторые известные числа. Удобство этого равенства для вычисления двугранных углов заключается в том, что оно в явном виде содержит координаты направляющего вектора плоскости. Будем обозначать его n¯. Тогда:

    Вектор n¯ перпендикулярен плоскости. Угол между двумя плоскостями равен углу между их n 1 ¯ и n 2 ¯. Из математики известно, что угол, образованный двумя векторами, однозначно определяется из их скалярного произведения. Это позволяет записать формулу для вычисления двугранного угла между двумя плоскостями:

    φ = arccos (|(n 1 ¯ × n 2 ¯)| / (|n 1 ¯| × |n 2 ¯|)).

    Если подставить координаты векторов, то формула запишется в явном виде:

    φ = arccos (|A 1 × A 2 + B 1 × B 2 + C 1 × C 2 | / (√(A 1 2 + B 1 2 + C 1 2) × √(A 2 2 + B 2 2 + C 2 2))).

    Знак модуля в числителе используется, чтобы определить только острый угол, поскольку двугранный угол всегда меньше или равен 90 o .

    Пирамида и ее углы

    Пирамидой называют фигуру, которая образована одним n-угольником и n треугольниками. Здесь n - целое число, равное количеству сторон многоугольника, который является основанием пирамиды. Данная пространственная фигура является многогранником или полиэдром, поскольку она состоит из плоских граней (сторон).

    Многогранника-пирамиды могут быть двух типов:

    • между основанием и боковой стороной (треугольником);
    • между двумя боковыми сторонами.

    Если рассматривается пирамида правильная, то названные углы для нее определить несложно. Для этого по координатам трех известных точек следует составить уравнение плоскостей, а затем воспользоваться приведенной в пункте выше формулой для угла φ.

    Ниже приведем пример, в котором покажем, как найти двугранные углы при основании пирамиды четырехугольной правильной.

    Четырехугольная и угол при ее основании

    Предположим, что дана правильная пирамида с квадратным основанием. Длина стороны квадрата равна a, высота фигура составляет h. Найдем угол между основанием пирамиды и ее боковой стороной.

    Поместим начало координатной системы в центр квадрата. Тогда координаты точек A, B, C, D, показанных на рисунке, будут равны:

    A = (a/2; -a/2; 0);

    B = (a/2; a/2; 0);

    C = (-a/2; a/2; 0);

    Рассмотрим плоскости ACB и ADB. Очевидно, что направляющий вектор n 1 ¯ для плоскости ACB будет равен:

    Для определения направляющего вектора n 2 ¯ плоскости ADB поступим следующим образом: найдем произвольные два вектора, которые ей принадлежат, например, AD¯ и AB¯, затем, вычислим их векторное произведение. Его результат даст координаты n 2 ¯. Имеем:

    AD¯ = D - A = (0; 0; h) - (a/2; -a/2; 0) = (-a/2; a/2; h);

    AB¯ = B - A = (a/2; a/2; 0) - (a/2; -a/2; 0) = (0; a; 0);

    n 2 ¯ = = [(-a/2; a/2; h) × (0; a; 0)] = (-a × h; 0; -a 2 /2).

    Поскольку умножение и деление вектора на число не изменяет его направления, то преобразуем полученный n 2 ¯, разделив его координаты на -a, получим:

    Мы определили направляющие вектора n 1 ¯ и n 2 ¯ для плоскостей основания ACB и боковой стороны ADB. Остается воспользоваться формулой для угла φ:

    φ = arccos (|(n 1 ¯ × n 2 ¯)| / (|n 1 ¯| × |n 2 ¯|)) = arccos (a / (2 × √h 2 + a 2 /4)).

    Преобразуем полученное выражение и перезапишем его так:

    φ = arccos (a / √(a 2 + 4 × h 2)).

    Мы получили формулу для двугранного угла при основании для правильной четырехугольной пирамиды. Зная высоту фигуры и длину ее стороны, можно рассчитать угол φ. Например, для пирамиды Хеопса, сторона основания которой составляет 230,4 метра, а начальная высота равнялась 146,5 метра, угол φ будет равен 51,8 o .

    Определить двугранный угол для четырехугольной правильной пирамиды также можно с помощью геометрического метода. Для этого достаточно рассмотреть прямоугольный треугольник, образованный высотой h, половиной длины основания a/2 и апофемой равнобедренного треугольника.

    Величину угла между двумя различными плоскостями можно определить для любого взаимного расположения плоскостей.

    Тривиальный случай если плоскости параллельны. Тогда угол между ними считается равным нулю.

    Нетривиальный случай если плоскости пересекаются. Этому случаю и посвящено дальнейшее обсуждение. Сначала нам понадобится понятие двугранного угла.

    9.1 Двугранный угол

    Двугранный угол это две полуплоскости с общей прямой (которая называется ребром двугранного угла). На рис. 50 изображён двугранный угол, образованный полуплоскостями и; ребром этого двугранного угла служит прямая a, общая для данных полуплоскостей.

    Рис. 50. Двугранный угол

    Двугранный угол можно измерять в градусах или радианах словом, ввести угловую величину двугранного угла. Делается это следующим образом.

    На ребре двугранного угла, образованного полуплоскостями и, возьмём произвольную точку M. Проведём лучи MA и MB, лежащие соответственно в данных полуплоскостях и перпендикулярные ребру (рис. 51 ).

    Рис. 51. Линейный угол двугранного угла

    Полученный угол AMB это линейный угол двугранного угла. Угол " = \AMB как раз и является угловой величиной нашего двугранного угла.

    Определение. Угловая величина двугранного угла это величина линейного угла данного двугранного угла.

    Все линейные углы двугранного угла равны друг другу (ведь они получаются друг из друга параллельным сдвигом). Поэтому данное определение корректно: величина " не зависит от конкретного выбора точки M на ребре двугранного угла.

    9.2 Определение угла между плоскостями

    При пересечении двух плоскостей получаются четыре двугранных угла. Если все они имеют одинаковую величину (по 90), то плоскости называются перпендикулярными; угол между плоскостями тогда равен 90 .

    Если не все двугранные углы одинаковы (то есть имеются два острых и два тупых), то углом между плоскостями называется величина острого двугранного угла (рис. 52 ).

    Рис. 52. Угол между плоскостями

    9.3 Примеры решения задач

    Разберём три задачи. Первая простая, вторая и третья примерно на уровне C2 на ЕГЭ по математике.

    Задача 1. Найдите угол между двумя гранями правильного тетраэдра.

    Решение. Пусть ABCD правильный тетраэдр. Проведём медианы AM и DM соответствующих граней, а также высоту тетраэдра DH (рис. 53 ).

    Рис. 53. К задаче 1

    Будучи медианами, AM и DM являются также высотами равносторонних треугольников ABC и DBC. Поэтому угол " = \AMD есть линейный угол двугранного угла, образованного гранями ABC и DBC. Находим его из треугольника DHM:

    1 AM

    Ответ: arccos 1 3 .

    Задача 2. В правильной четырёхугольной пирамиде SABCD (с вершиной S) боковое ребро равно стороне основания. Точка K середина ребра SA. Найдите угол между плоскостями

    Решение. Прямая BC параллельна AD и тем самым параллельна плоскости ADS. Поэтому плоскость KBC пересекает плоскость ADS по прямой KL, параллельной BC (рис. 54 ).

    Рис. 54. К задаче 2

    При этом KL будет также параллельна прямой AD; следовательно, KL средняя линия треугольника ADS, и точка L середина DS.

    Проведём высоту пирамиды SO. Пусть N середина DO. Тогда LN средняя линия треугольника DOS, и потому LN k SO. Значит, LN перпендикуляр к плоскости ABC.

    Из точки N опустим перпендикуляр NM на прямую BC. Прямая NM будет проекцией наклонной LM на плоскость ABC. Из теоремы о трёх перпендикулярах следует тогда, что LM также перпендикулярна BC.

    Таким образом, угол " = \LMN является линейным углом двугранного угла, образованного полуплоскостями KBC и ABC. Будем искать этот угол из прямоугольного треугольника LMN.

    Пусть ребро пирамиды равно a. Сначала находим высоту пирамиды:

    SO = p

    Решение. Пусть L точка пересечения прямых A1 K и AB. Тогда плоскость A1 KC пересекает плоскость ABC по прямой CL (рис.55 ).

    A C

    Рис. 55. К задаче 3

    Треугольники A1 B1 K и KBL равны по катету и острому углу. Следовательно, равны и другие катеты: A1 B1 = BL.

    Рассмотрим треугольник ACL. В нём BA = BC = BL. Угол CBL равен 120 ; стало быть, \BCL = 30 . Кроме того, \BCA = 60 . Поэтому \ACL = \BCA + \BCL = 90 .

    Итак, LC ? AC. Но прямая AC служит проекцией прямой A1 C на плоскость ABC. По теореме о трёх перпендикулярах заключаем тогда, что LC ? A1 C.

    Таким образом, угол A1 CA линейный угол двугранного угла, образованного полуплоскостями A1 KC и ABC. Это и есть искомый угол. Из равнобедренного прямоугольного треугольника A1 AC мы видим, что он равен 45 .

    Данный урок предназначается для самостоятельного изучения темы «Двугранный угол». В ходе этого занятия учащиеся познакомятся с одной из самых важных геометрических фигур - двугранным углом. Также на уроке нам предстоит узнать о том, как определить линейный угол рассматриваемой геометрической фигуры и какой бывает двугранный угол при основании фигуры.

    Повторим, что такое угол на плоскости и как он измеряется.

    Рис. 1. Плоскость

    Рассмотрим плоскость α (рис. 1). Из точки О исходят два луча - ОВ и ОА .

    Определение . Фигура, образованная двумя лучами, исходящими из одной точки, называется углом.

    Угол измеряется в градусах и в радианах.

    Вспомним, что такое радиан.

    Рис. 2. Радиан

    Если мы имеем центральный угол, длина дуги которого равна радиусу, то такой центральный угол называется углом в 1 радиан. , ∠АОВ = 1 рад (рис. 2).

    Связь радианов и градусов.

    рад.

    Получаем, рад. (). Тогда,

    Определение . Двугранным углом называется фигура, образованная прямой а и двумя полуплоскостями с общей границей а , не принадлежащими одной плоскости.

    Рис. 3. Полуплоскости

    Рассмотрим две полуплоскости α и β (рис. 3). Их общая граница - а . Указанная фигура называется двугранным углом.

    Терминология

    Полуплоскости α и β - это грани двугранного угла.

    Прямая а - это ребро двугранного угла.

    На общем ребре а двугранного угла выберем произвольную точку О (рис. 4). В полуплоскости α из точки О восстановим перпендикуляр ОА к прямой а . Из той же точки О во второй полуплоскости β восставим перпендикуляр ОВ к ребру а . Получили угол АОВ , который называется линейным углом двугранного угла.

    Рис. 4. Измерение двугранного угла

    Докажем равенство всех линейных углов для данного двугранного угла.

    Пусть мы имеем двугранный угол (рис. 5). Выберем точку О и точку О 1 на прямой а . Построим линейный угол соответствующий точке О , т. е. проведем два перпендикуляра ОА и ОВ в плоскостях α и β соответственно к ребру а . Получаем угол АОВ - линейный угол двугранного угла.

    Рис. 5. Иллюстрация доказательства

    Из точки О 1 проведем два перпендикуляра ОА 1 и ОВ 1 к ребру а в плоскостях α и β соответственно и получим второй линейный угол А 1 О 1 В 1 .

    Лучи О 1 А 1 и ОА сонаправленны, так как они лежат в одной полуплоскости и параллельны между собой как два перпендикуляра к одной и той же прямой а .

    Аналогично, лучи О 1 В 1 и ОВ сонаправлены, значит, АОВ = А 1 О 1 В 1 как углы с сонаправленными сторонами, что и требовалось доказать.

    Плоскость линейного угла перпендикулярна ребру двугранного угла.

    Доказать : а АОВ.

    Рис. 6. Иллюстрация доказательства

    Доказательство :

    ОА а по построению, ОВ а по построению (рис. 6).

    Получаем, что прямая а перпендикулярна двум пересекающимся прямым ОА и ОВ из плоскости АОВ , значит, прямая а перпендикулярна плоскости ОАВ , что и требовалось доказать.

    Двугранный угол измеряется своим линейным углом. Это означает, что, сколько градусов радиан содержится в линейном угле, столько же градусов радиан содержится в его двугранном угле. В соответствии с этим различают следующие виды двугранных углов.

    Острый (рис. 6)

    Двугранный угол острый, если его линейный угол острый, т.е. .

    Прямой (рис. 7)

    Двугранный угол прямой, когда его линейный угол равен 90°- Тупой (рис. 8)

    Двугранный угол тупой, когда его линейный угол тупой, т.е. .

    Рис. 7. Прямой угол

    Рис. 8. Тупой угол

    Примеры построения линейных углов в реальных фигурах

    АВС D - тетраэдр.

    1. Построить линейный угол двугранного угла с ребром АВ .

    Рис. 9. Иллюстрация к задаче

    Построение :

    Речь идет о двугранном угле, который образован ребром АВ и гранями АВ D и АВС (рис. 9).

    Проведем прямую D Н перпендикулярно плоскости АВС , Н - основание перпендикуляра. Проведем наклонную D М перпендикулярно прямой АВ, М - основание наклонной. По теореме о трех перпендикулярах заключаем, что проекция наклонной НМ также перпендикулярна прямой АВ .

    То есть, из точки М восстановлены два перпендикуляра к ребру АВ в двух гранях АВ D и АВС . Мы получили линейный угол D МН .

    Заметим, что АВ , ребро двугранного угла, перпендикулярно плоскости линейного угла, т. е. плоскости D МН . Задача решена.

    Замечание . Двугранный угол можно обозначить следующим образом: D АВС , где

    АВ - ребро, а точки D и С лежат в разных гранях угла.

    2. Построить линейный угол двугранного угла с ребром АС .

    Проведем перпендикуляр D Н к плоскости АВС и наклонную D N перпендикулярно прямой АС. По теореме о трех перпендикулярах получаем, что НN - проекция наклонной D N на плоскость АВС, также перпендикулярна прямой АС. D - линейный угол двугранного угла с ребром АС .

    В тетраэдре D АВС все ребра равны. Точка М - середина ребра АС . Докажите, что угол D МВ - линейный угол двугранного угла ВАС D , т. е. двугранного угла с ребром АС . Одна его грань - АС D , вторая - АСВ (рис. 10).

    Рис. 10. Иллюстрация к задаче

    Решение :

    Треугольник ADC - равносторонний, DM - медиана, а значит и высота. Значит, D М АС. Аналогично, треугольник A В C - равносторонний, В M - медиана, а значит, и высота. Значит, ВМ АС.

    Таким образом, из точки М ребра АС двугранного угла восстановлено два перпендикуляра DM и ВМ к этому ребру в гранях двугранного угла.

    Значит, ∠DM В - линейный угол двугранного угла, что и требовалось доказать.

    Итак, мы определили двугранный угол, линейный угол двугранного угла.

    На следующем уроке мы рассмотрим перпендикулярность прямых и плоскостей, дальше узнаем что такое двугранный угол при основании фигур.

    Список литературы по теме "Двугранный угол", "Двугранный угол при основании геометрических фигур"

    1. Геометрия. 10-11 класс: учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил.
    2. Геометрия. 10 класс: учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М.: Дрофа, 2008. - 233 с.: ил.
    1. Yaklass.ru ().
    2. E-science.ru ().
    3. Webmath.exponenta.ru ().
    4. Tutoronline.ru ().

    Домашнее задание по теме "Двугранный угол", определение двугранного угла при основании фигур

    Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

    Задания 2, 3 стр. 67.

    Что такое линейный угол двугранного угла? Как его построить?

    АВС D - тетраэдр. Построить линейный угол двугранного угла с ребром:

    а) В D б) D С.

    АВС DA 1 B 1 C 1 D 1 - куб. Постройте линейный угол двугранного угла А 1 АВС с ребром АВ . Определите его градусную меру.



    Последние материалы раздела:

    Сколько в одном метре километров Чему равен 1 км в метрах
    Сколько в одном метре километров Чему равен 1 км в метрах

    квадратный километр - — Тематики нефтегазовая промышленность EN square kilometersq.km … квадратный километр - мера площадей метрической системы...

    Читы на GTA: San-Andreas для андроид
    Читы на GTA: San-Andreas для андроид

    Все коды на GTA San Andreas на Андроид, которые дадут вам бессмертность, бесконечные патроны, неуязвимость, выносливость, новые машины, парашют,...

    Классическая механика Закон сохранения энергии
    Классическая механика Закон сохранения энергии

    Определение Механикой называется часть физики, изучающая движение и взаимодействие материальных тел. При этом механическое движение...