§26. Термодинамические параметры. Термодинамический процесс. Анализ термодинамических процессов. Термодинамические процессы идеальных газов

Термодинамические процессы.

Всякий термодинамический процесс может возникнуть только при нарушении механического или термического равновесия, т.е. при сжатии или расширении газа (давление среды больше или меньше давления газа), при нагреве или охлаждении газа (температура среды больше или меньше температуры газа). Чем сильнее нарушается равновесие, тем быстрее в общем случае проходит процесс и тем более резко будет нарушаться состояние покоя газа.

В ходе термодинамического процесса будут меняться равновесные параметры системы (тела), связь между которыми дается уравнением состояния f(p,V,T)=0 , и внутренняя энергия, изменение которой можно определить по уравнению вида f(U, T, V)=0 .

В термодинамике процессы, подчиненные закономерности, выражаемой условием φ=const, называются политропными (с греч. многообразными). Изменение параметров газа в политропном процессе, определяется величиной n , называемой показателем политропы и для каждого процесса она постоянна.

Исследование процессов при разных значениях n приводит нас к некоторым частным случаям политропных процессов, особо выделяемым при изучении:

Изобарный процесс (постоянное давление), показатель политропы равен 0;

Изотермический процесс (постоянная температура), показатель политропы равен 1;

Адиабатный процесс (процесс без обмена теплотой с окружающим пространством), показатель политропы равен постоянному числу;

Изохорный процесс (объем постоянен), показатель политропы равен множеству.

Свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту, называют – энтальпия. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления, не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Энтальпию определяют как полную энергию вещества , так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью преобразовать теплоту в работу при определенной температуре и давлении (pv). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту.

H = U + pV

Единицы энтальпии - британская тепловая единица или джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

Рассмотрим, что такое кпд тепловой машины

Термический коэффициент полезного действия

Если имеются различные циклические тепловые машины действующие между температурами Т 1 и Т 2 и если некоторые из этих систем обратимые, то к.п.д. всех систем одинаков, а необратимые будут иметь к.п.д. не превышающих к.п.д. обратимых систем.

Ничто, кроме силы трения, не мешает нам довести КПД простого механизма (рычага, блока, ворота и т.д.) до 100 %. Всю механическую энергию тела можно превратить во внутреннюю, во внутреннюю энергию самого тела и окружающих тел.

Дж/°С

Данная величина называется энтрапия

Первое начало термодинамики, устанавливает существование у всякой равновесной системы однозначной функции состояния – внутренней энергии, которая не изменяется в отсутствии внешних воздействий при любых процессах внутри системы.

Второе начало термодинамики устанавливает существование у всякой равновесной системы другой однозначной функции состояния – энтропии, которая, однако, в отличие от внутренней энергии, не изменяется у изолированной системы только в равновесных процессах и всегда возрастает при неравновесных в ней процессах. Таким образом, второй закон термодинамики представляет собой закон об энтропии.

Можно объединить математические выражения первого и второго законов термодинамики в одном уравнении:

первый

второй

откуда получаем

Это соотношение, охватывающее первый и второй законы термодинаки, называют термодинамическим тождеством. Все выведенные уравнения применимы для обратимых циклов и процессов.

Без внешнего воздействия процессы могут протекать только в том случае, когда энтропия постоянна (при обратимые процессы) или возрастает (необратимые процессы).

Невозможно построить машину, которая могла бы за счет теплоты от охлажденных тел превращала бы ее в работу.

Максимальное значение энтропии замкнутой системы достигается тогда, когда система приходит в состояние термодинамического равновесия. Такая количественная формулировка второго закона термодинамики дана Клаузиусом.

Переход из неравновесного состояния в равновесное представляет собой переход из состояния, которое может осуществляться меньшим числом способов, в состояние, осуществляемое значительно большим числом способов. Наиболее вероятным для замкнутой системы будет то состояние, которое осуществляется наибольшим числом способов, т.е. состояние теплового равновесия.

В то же время маловероятным был бы самопроизвольный выход системы из состояния равновесия. Число способов, которыми может быть осуществлено данное равновесное состояние, называется термодинамической вероятностью ω.

Число способов ω, которыми может осуществляться данное состояние системы, состоящие, например, из двух тел, равно произведению чисел способов ω 1 и ω 2 , которыми могут быть осуществлены состояния каждого из этих тел в отдельности

ω сист =ω 1 ω 2

Термодинамическая вероятность не связана с тепловыми характеристиками системы, а лишь с механическими.

При этом энтропия будет равна

где К – универсальная газовая постоянная, отнесенная к одной молекуле и равна 1,38∙10 -23 Дж/°С

К=R/N A

где R– газовая постоянная;

N A – число Авагарда.

Энтропия химически однородного тела конечной плотности при стремлении температуры к абсолютному нулю стремится к предельному значению, не зависящему от давления, плотности или фазы. Удобно поэтому принимать состояние при 0°К за некоторое начальное состояние и считать, что

Данное уравнение носит название закона Нерста или третьего закона термодинамики.

Тогда энтропия произвольного состояния определяется однозначным образом. Найденую таким образом энтропию называют иногда абсолютной энтропией.

Термодинамическому состояниюсистемы при абсолютном нуле соответствует только одно термодинамическое состояние с наименьшей энергией совместимое с данной кристалической структурой или с данным агрегатным состоянием системы.

В термодинамике выделяют несколько основных процессов. Термодинамическим процессом принято называть такое изменение общего состояния всей системы, когда в результате подобных трансформаций меняется полностью хотя бы один из ее основных параметров, его значение. Ими выступают:

Рисунок 1. Термодинамические процессы. Автор24 - интернет-биржа студенческих работ

  • температура;
  • давление;
  • объем.

Известно, что все термодинамические процессы имеют тесные связи друг с другом. При изменении хотя бы одного параметра может меняться в неизбежном режиме вся система. В общем смысле, любой термодинамический процесс можно представить в виде равновесной системы, которая балансирует на грани нарушения этого равновесия. Если вся система уже находится в равновесном состоянии, то это явление не предполагает наличия термодинамических процессов вовсе. В таких системах не фиксируются термодинамические процессы.

Хоть понятие равновесного состояния системы нельзя назвать четким, все же существуют некоторые законы его присутствия в реальном воплощении. Любые материальные вещи невозможно полностью изолировать от окружающего его мира, поэтому в любой реальной системе возможно протекание различных термодинамических процессов. Иногда подобные процессы протекают настолько слабо и медленно, что не всегда удается их зафиксировать в оптимальном выражении. Специалисты их устанавливают как цепь разнообразных равновесных состояний системы. Их еще могут называть равновесными процессами, а также квазистатическими процессами.

Круговыми процессами и циклическими процессами называют ряд последовательных повторяющихся изменений в системе. В итоге система после прохождения определенного отрезка пути возвращается в исходное состояние. Круговой и равновесный процесс возникает и изучается под видом прикладных приемов термодинамики физических явлений, а также они лежат в основании некоторых теоретических размышлений и выводов науки.

Сегодня выделяют несколько основных термодинамических процессов:

  • изобарный;
  • изохорный;
  • адиабатический;
  • адиабатный;
  • политропный;
  • изотермический.

Изобарный процесс

Рисунок 2. Изобарный процесс . Автор24 - интернет-биржа студенческих работ

Определение 1

Изобарный процесс – это такой термодинамический процесс, который может протекать при постоянном давлении. Подобный процесс осуществляется, например, когда помещается газ в плотный цилиндр, где есть подвижный поршневой крючок.

На поршень действует постоянная внешняя сила. Она достигается при подводе или отводе теплоты к объекту. При этом сама подвижная часть поршня способна менять свое местоположение при изменении параметров температуры. От этого зависит направление движения поршня. Согласно закону Гей-Люссака, объем газа в нем меняется, исходя из уравнения закона. Из этого следует, что занимаемый объем газа может быть прямо пропорционален определенной температуре воздействия. Внутренняя энергия газов изменяется под действием температурного режима извне. Этим правилом характеризуется весь изобарный процесс в термодинамике.

Изохорный процесс

Определение 2

Изохорный процесс – термодинамический процесс, который заключается в протекании при постоянном объеме.

В качестве примера можно привести закрытый сосуд, куда помещен газ. При его нагревании возникают признаки изохорного процесса. При подводе особого температурного режима к изучаемому сосуду давление возрастает. Чем больше тепловой эффект, тем процесс становится более интенсивным. Подобные преобразования параметров газа в сосуде способен математическим методом описать закон Шарля.

Согласно его уравнению, давление газа на стенки сосуда будут прямо пропорциональными абсолютной температуре этого газа. Примечательно, что вся подведенная к сосуду теплота изменяет внутреннюю энергию газа, поэтому совершение работы не происходит изменение объема в сосуде при изохорном процессе равно нулевым значениям.

Адиабатный процесс

Адиабатный процесс - такой термодинамический процесс, который может протекать без теплообмена рабочего тела и окружающей среды. В обычных условиях адиабатный процесс сложно представить и осуществить, так как подобное явление протекает только с телом, помещенное в сосуд. В роли сосуда может находиться цилиндр с работающим поршнем внутри. Весь сосуд должен быть окружен теплоизоляционным материалом высокого качества. Однако полностью изолировать рабочее тело не представляется возможным и теплоизолятор сильного действия не даст гарантии обмена теплотой с окружающей средой. В этом случае, возможно, предстоит создать лишь приблизительную модель адиабатного процесса, так как многие явления протекают очень быстро и принято рассматривать подобные модели с показателями по погрешности.

Изотермический процесс

Изотермический процесс – термодинамический процесс, который протекает при неизменной температуре. Его так же, как и адиабатный процесс осуществить с точностью очень сложно. Для этого необходимо соблюдение условий по расширению и сжатию рабочего газа при постоянной температуре. Также нужно, чтобы газы успевали обмениваться с окружающей средой без потери собственного температурного режима. Хорошо способен описать этот процесс закон Бойля-Мариотта.

Политропный процесс

Политропный процесс характеризуется иными свойствами термодинамических процессов. В отличие от вышеперечисленных процессов термодинамики политропный процесс предполагает возможность изменения любого параметра газа. В других процессах подобные параметры изменять нельзя. Иные термодинамические процессы принято считать частными случаями политропного процесса.

Общим уравнением политропного процесса является $pvn = const$. В этом уравнении $n$ – показатель политропы, которая является постоянной для данного процесса величиной. Она принимает различные значения - ∞ до + ∞.

Если придавать известной формуле определенные значения показателю политропы, то в качестве результата получаем определенный термодинамический процесс. В зависимости от этих представлений приходит итог по изотермическому, адиабатному, изохорному или изобарному процессу.

Термодинамический процесс (тепловой процесс) – изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).

Система, в которой идёт тепловой процесс, называется рабочим телом.

Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями. Такой процесс приближённо реализуется в тех случаях, когда изменения происходят достаточно медленно, т. е. процесс является квазистатическим.

Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.

Виды тепловых процессов:

Адиабатный процесс - без теплообмена с окр. средой;

Изохорный процесс - происходящий при постоянном объёме;

Изобарный процесс - происходящий при постоянном давлении;

Изотермический процесс - происходящий при постоянной температуре;

Изоэнтропийный процесс - происходящий при постоянной энтропии;

Изоэнтальпийный процесс - происходящий при постоянной энтальпии;

Политропный процесс - происходящий при постоянной теплоёмкости.

Уравнение Менделеева-Клайперона (уравнение состояния идеального газа):

PV = nRT, где n – число молей газа, P – давление газа, V – объем газа, T – температура газа, R – универсальная газовая постоянная

Изопроцессы идеального газа. Их изображение в P - V диаграммах.

1) Изобарный процесс p = const, V/T = const

2) Изохорный процесс V = const, p/T = const

3) Изотермический процесс T = const, pV = const

Термодинамические процессы. Уравнение Менделеева-Клапейрона. Изопроцессы идеального газа. Их изображение на Р- V диаграммах.

Термодинамические процессы. Совокупность изменяющихся состояний рабочего тела называется термодинамическим процессом.

Идеальный газ - изучаемый в термодинамике воображаемый газ, у которого отсутствуют силы межмолекулярного притяжения н отталкивания, а сами молекулы представляют собой материальные точки, не имеющие объема. Многие реальные газы по своим физическим свойствам весьма близки к идеальному газу.

Основными процессами в термодинамике являются:

    изохорный , протекающий при постоянном объеме;

    изобарный , протекающий при постоянном давлении;

    изотермический , происходящий при постоянной температуре;

    адиабатный , при котором теплообмен с окружающей средой отсутствует;

Изохорный процесс

При изохорном процессе выполняется условие v = const.

Из уравнения состояния идеального газа (pv =RT) следует:

p/T =R/v = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

p 2 /p 1 =T 2 /T 1 .

Работа расширения в изохорном процессе равна нулю (l = 0), так как объем рабочего тела не меняется (Δv = const).

Количество теплоты, подведенной к рабочему телу в процессе 1-2 при c v

q =c v (T 2 - T 1 ).

Т. к.l = 0, то на основании первого закона термодинамики Δu =q , а значит изменение внутренней энергии можно определить по формуле:

Δu =c v (T 2 - T 1 ).

Изменение энтропии в изохорном процессе определяется по формуле:

s 2 – s 1 = Δs = c v ln(p 2 /p 1 ) = c v ln(T 2 /T 1 ).

Изобарный процесс

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа слуедует:

v / T =R / p =const

v 2 /v 1 =T 2 /T 1 ,

т. е. в изобарном процессе объем газа пропорционален его абсолютной температуре.

Работа будет равна:

l =p (v 2 – v 1 ).

Т. к. pv 1 =RT 1 иpv 2 =RT 2 , то

l =R (T 2 – T 1 ).

Количество теплоты при c p = const определяется по формуле:

q =c p (T 2 – T 1 ).

Изменение энтропии будет равно:

s 2 – s 1 = Δs = c p ln(T 2 /T 1 ).

Изотермический процесс

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pv = RT = const

p 2 / p 1 =v 1 / v 2 ,

т. е. давление и объем обратно пропорциональны друг другу, так что при изотермическом сжатии давление газа возрастает, а при расширении – снижается.

Работа процесса будет равна:

l =RT ln (v 2 – v 1 ) =RT ln (p 1 – p 2 ).

Так как температура остается неизменной, то и внутренняя энергия идеального газа в изотермическом процессе остается постоянной (Δu = 0) и вся подводимая к рабочему телу теплота полностью превращается в работу расширения:

q =l.

При изотермическом сжатии от рабочего тела отводится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии равно:

s 2 – s 1 = Δs =R ln(p 1 /p 2 ) =R ln(v 2 /v 1 ).

Адиабатный процесс

Адиабатным называется процесс изменения состояния газа, который происзодит без теплообмена с окружающей средой. Так как dq = 0, то уравнение первого закона термодинамики для адиабатного процесса будет иметь вид:

du +p dv = 0

Δu +l = 0,

следовательно

Δu = -l.

В адиабатном процессе работа расширения совершается только за счет расходования внутренней энергии газа, а при сжатии, происходящем за счет действия внешних сил, вся совершаемая ими работа идет на увеличение внутренней энергии газа.

Обозначим теплоемкость в адиабатном процессе через c ад, и условие dq = 0 выразим следующим образом:

dq =c ад dT = 0.

Это условие говорит о том, что теплоемкость в адиабатном процессе равна нулю (c ад = 0).

Известно, что

с p /c v =k

и уравнение кривой адиабатного процесса (адиабаты) в p, v -диаграмме имеет вид:

pv k = const.

В этом выражении k носит названиепоказателя адиабаты (так же ее называют коэффициентом Пуассона).

Значения показателя адиабаты k для некоторых газов:

k воздуха = 1,4

k перегретого пара = 1,3

k выхлопных газов ДВС = 1,33

k насыщенного влажного пара = 1,135

Из предыдущих формул следует:

l = - Δu = c v (T 1 – T 2 );

i 1 – i 2 = c p (T 1 – T 2 ).

Техническая работа адиабатного процесса (l техн) равна разности энтальпий начала и конца процесса (i 1 – i 2 ).

Адиабатный процесс, происходящий без внутреннего трения в рабочем теле, называется изоэнтропийным . ВT, s -диаграмме он изображается вертикальной линией.

Обычно реальные адиабатные процессы протекают при наличии внутреннего трения в рабочем теле, в результате чего всегда выделяется теплота, которая сообщается самому рабочему телу. В таком случае ds > 0, и процесс называетсяреальным адиабатным процессом .

Уравнение Менделеева-Клапейрона

Газы нередко бывают реагентами и продуктами в химических реакциях. Не всегда удается заставить их реагировать между собой при нормальных условиях. Поэтому нужно научиться определять число молей газов в условиях, отличных от нормальных.

Для этого используют уравнение состояния идеального газа (его также называют уравнением Клапейрона-Менделеева):

PV = n RT

где n – число молей газа;

P – давление газа (например, в атм ;

V – объем газа (в литрах);

T – температура газа (в кельвинах);

R – газовая постоянная (0,0821 л·атм /моль·K).

Например, в колбе объемом 2,6 л находится кислород при давлении 2,3 атм и температуре 26 о С. Вопрос: сколько молей O 2 содержится в колбе?

Из газового закона найдем искомое число молей n :

Не следует забывать преобразовывать температуру из градусов Цельсия в кельвины: (273 о С + 26 о С) = 299 K. Вообще говоря, чтобы не ошибиться в подобных вычислениях, нужно внимательно следить за размерностью величин, подставляемых в уравнение Клапейрона-Менделеева. Если давление дается в мм ртутного столба, то нужно перевести его в атмосферы, исходя из соотношения: 1атм = 760 мм рт. ст. Давление, заданное в паскалях (Па), также можно перевести в атмосферы, исходя из того, что 101325 Па = 1атм .

Билет 16

Вывод основного уравнения молекулярно-кинетической теории. Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Вывод основного уравнения МКТ.

Число степеней свободы молекулы. Закон распределения энергии по степеням свободы.

Билет 17.

Первое начало термодинамики. Работа газа при изменении объема. Вычислить работу изотермического расширения газа.

Количество теплоты , полученное системой, идёт на изменение её внутренней энергии и совершение работы против внешних сил

Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе, то есть, оно зависит только от начального и конечного состояния системы и не зависит от способа, которым осуществляется этот переход. В циклическом процессе внутренняя энергия не изменяется.

Работа при изотермическом расширении газа вычисляется как площадь фигуры под графиком процесса.


Билет 18.

Теплоемкость идеального газа.

Если в результате теплообмена телу передается некоторое количество теплоты, то внутренняя энергия тела и его температура изменяются. Количество теплоты Q, необходимое для нагревания 1 кг вещества на 1 К называют удельной теплоемкостью вещества c. c = Q / (mΔT).

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе (V = const) и C p – молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид (формула Майера):

C p = C V + R.

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом

Отношение теплоемкостей в процессах с постоянным давлением и постоянным объемом играет важную роль в термодинамике. Оно обозначается греческой буквой γ.

Билет 19.

Цикл Карно. Тепловая и холодильная машины. КПД цикла Карно.

В термодинамике цикл Карно́ или процесс Карно - это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов. В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой - холодильником.

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году.

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно

Пусть тепловая машина состоит из нагревателя с температурой Тн, холодильника с температурой Тх и рабочего тела .

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две - при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура ) и S (энтропия ).

1. Изотермическое расширение (на рис. 1 - процесс A→Б). В начале процесса рабочее тело имеет температуру Тн, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q. При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 - процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника Тх, тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 - процесс В→Г). Рабочее тело, имеющее температуру Тн, приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты Q. Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 - процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Обратный цикл Карно

В термодинамике холодильных установок и тепловых насосов рассматривают обратный цикл Карно , состоящий из следующих стадии: адиабатического сжатия за счёт совершения работы (на рис. 1 - процесс В→Б); изотермического сжатия с передачей теплоты более нагретому тепловому резервуару (на рис. 1 - процесс Б→А); адиабатического расширения (на рис. 1 - процесс А→Г); изотермического расширения с отводом теплоты от более холодного теплового резервуара (на рис. 1 - процесс Г→В).

Билет 20.

Второе начало термодинамики. Энтропия. Третье начало термодинамики.

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов, которые могут происходить в термодинамических системах .

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода , показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Второе начало термодинамики является постулатом , не доказываемым в рамках классической термодинамики . Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Постулат Клаузиуса : «Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому» (такой процесс называется процессом Клаузиуса ).

Постулат Томсона (Кельвина) : «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона ).

Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии ).

Такая формулировка основывается на представлении об энтропии как о функции состояния системы, что также должно быть постулировано.

В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Третье начало термодинамики (теорема Нернста ) - физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю . Является одним из постулатов термодинамики , принимаемым на основе обобщения значительного количества экспериментальных данных.

Третье начало термодинамики может быть сформулировано так:

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система» .

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение). Третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температуры считают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики).

Термодинамическая энтропия S , часто просто именуемая энтропия , - физическая величина , используемая для описания термодинамической системы , одна из основных термодинамических величин . Энтропия является функцией состояния и широко используется в термодинамике , в том числе химической .

Изменение состояния системы, характеризующееся изменением ее термодинамических параметров, называется термодинамическим процессом . Иными словами, если система переходит из исходного состояния в конечное, отличное от исходного, то совершается процесс. Чаще всего в термодинамике рассматриваются следующие процессы:

1) изотермический (T = const ), {греческое therme – жар, теплота};

2) изобарный (р = const ), {греческое baros – тяжесть, вес};

3) изохорный ((V = const ), {греческое chora – пространство};

4) изобарно-изотермический (р = const, Т = const );

5) изохорно-изотермический (V = const, Т = const );

6) адиабатический (отсутствует обмен теплотой между системой и внешней средой).

Процесс, в результате которого система, выйдя из начального состояния и претерпев ряд превращений, вновь в него возвращается, называется круговым процессом или циклом .

Изменение состояния системы может происходить при различных условиях. Поэтому различают в первую очередьравновесные (квазистатические ) и неравновесные процессы. Процесс, рассматриваемый как непрерывный ряд равновесных состояний системы. называется равновесным процессом . При равновесном процессе все параметры системы меняются бесконечно медленно, так что система все время находится в состоянии равновесия.

Чтобы термодинамический процесс осуществлялся квазистатически (равновесно), необходимо выполнение следующих условий :

1. Бесконечно малая разность действующих и противодействующих сил (например, давление в системе на бесконечно малую величину отличается от внешнего давления).

2. Бесконечно медленное течение процесса.

3. Совершение максимальной работы (при неравновесном процессе работа всегда меньше, чем при равновесном и может быть равной нулю – например, расширение идеального газа в вакуум).

4. Изменение внешней силы на бесконечно малую величину меняет направление процесса на обратный.

5. Абсолютные значения работ прямого и обратного процессов одинаковы, а их пути совпадают.

Процесс перехода системы из неравновесного состояния в равновесное называетсярелаксацией , а продолжительность этого процесса – временем релаксации . У различных процессов время релаксации неодинаково: от 10 -7 секунды для установления равновесного давления в газе до нескольких лет при выравнивании концентраций в твердых сплавах.

Следует отметить, что реальные процессы протекают при нарушении равновесия между системой и окружающей средой, при этом возникают потоки энергии и или вещества внутри системы, нарушая в ней равновесие. Поэтому реальные процессы, протекающие с нарушением равновесного состояния системы, являются неравновесными . В классической (феноменологической) термодинамике изучаются только равновесные процессы . Выводы, полученные термодинамикой для равновесных процессов, играют в ней роль своего рода предельных теорем.



Физически бесконечно медленным или квазистатическим (равновесным) изменением какого-либо параметра «а » называют такое его изменение со временем, когда скорость изменения da /dt значительно меньше средней скорости изменения этого параметра при релаксации (здесь t – время). Если при релаксации параметр «а » изменился на Δа , а время релаксации τ , то при равновесных процессах

Если изменение параметра «a » происходит за время t , меньшее или равное времени релаксации τ , так что

то такой процесс является неравновесным или нестатическим .

Кроме понятий равновесных (квазистатических) и неравновесных процессов в термодинамике все процессы делят на обратимые и необратимые . Обратимый термодинамический процесс – процесс перехода термодинамической системы из одного состояния в другое, который может протекать как в прямом, так и в обратном направлении через те же промежуточные состояния без каких бы то ни было изменений в окружающей среде . Если же процесс перехода системы из одного состояние в другое нельзя осуществить в прямом и обратном направлениях без изменения в окружающей среде, то его называют необратимым процессом. Очевидно, что равновесный процесс всегда обратим, а обратимый процесс всегда протекает равновесным путем .

Примеры необратимых процессов :

1. Процесс теплопередачи при конечной разности температур необратим . Обратимый процесс (как равновесный) начинается с состояния равновесия. Наличие разности температур указывает на неравновесность (нестатичность) процесса.

2. Расширение газа в вакуум необратимo , поскольку при таком расширении не совершается работа, а сжать газ так, чтобы не совершить работы, невозможно.

3. Процесс диффузии газов необратим . Если в сосуде с двумя различными газами, разделенными перегородкой, убрать перегородку, то каждый газ будет диффундировать в другой. Для разделения газов каждый из них нужно сжимать. Чтобы они не нагревались, необходимо отнять у них теплоту и превратить в работу, что невозможно без изменения в окружающей среде (второй закон термодинамики).



Последние материалы раздела:

Сколько в одном метре километров Чему равен 1 км в метрах
Сколько в одном метре километров Чему равен 1 км в метрах

квадратный километр - — Тематики нефтегазовая промышленность EN square kilometersq.km … квадратный километр - мера площадей метрической системы...

Читы на GTA: San-Andreas для андроид
Читы на GTA: San-Andreas для андроид

Все коды на GTA San Andreas на Андроид, которые дадут вам бессмертность, бесконечные патроны, неуязвимость, выносливость, новые машины, парашют,...

Классическая механика Закон сохранения энергии
Классическая механика Закон сохранения энергии

Определение Механикой называется часть физики, изучающая движение и взаимодействие материальных тел. При этом механическое движение...