Очаг поражения определение очаги поражения. Очаг поражения. Современные средства поражения их краткая характеристика, а также воздействие его на здания, сооружения, людей

Ядерный взрыв боеприпаса или таковой, возникающий при аварии на атомной электростанции, сопровождается выделением огромного количества энергии. Он по своему разрушающему действию в сотни и тысячи раз может превосходить взрыв самого крупного обычного боеприпаса и происходит в миллионные доли секунды. При этом в центре взрыва температура мгновенно повышается до нескольких миллионов градусов, а давление возрастает до нескольких миллионов атмосфер, и в результате этого вещество заряда переходит в газообразное состояние. Сфера раскаленных газов, стремящаяся расшириться, сжимает прилегающие слои воздуха. На границе сжатого воздуха создается перепад давления и образуется воздушная ударная волна.

Одновременно с ударной волной из зоны взрыва распространяется мощный поток нейтронов и гамма-излучения, образующихся в ходе ядерной реакции. Светящаяся область взрыва в виде огненного шара через 1-2 секунды достигает своих максимальных размеров, а мощные восходящие потоки воздуха, вызываемые разностью температур, поднимают с земли пыль и частицы грунта, образуя при этом характерный пылевой столб. Поднявшаяся пыль, смешавшись с радиоактивными осколками ядерного деления, постепенно выпадая из радиоактивного облака, заражает местность.

Мгновенно действующее гамма-излучение ионизирует атомы воздуха и разделяет их на электроны и положительно заряженные ионы. Причем электроны с большой скоростью разлетаются в радиальном направлении от центра взрыва, а положительно заряженные ионы практически остаются на месте. То есть происходит разделение положительных и отрицательных зарядов, а это приводит к возникновению электрических и магнитных полей. Эти короткоживущие поля принято называть электромагнитным импульсом (ЭМИ) ядерного взрыва.

Таким образом, при ядерном взрыве поражения возможны в результате воздействия:

· ударной волны (примерно 50-55% выделившейся при взрыве энергии);

· светового излучения (около 35% энергии взрыва), продолжающегося от нескольких секунд (при мощности боеприпаса до 20 кт) до 20 секунд (при мощности боеприпаса более 1Мт);

· проникающей радиации (примерно 5% энергии взрыва), продолжающейся до 15 секунд;

· радиоактивного заражения местности (до 5% энергии взрыва);

· электромагнитного импульса, время действия которого измеряется миллисекундами.

Ударная волна - наиболее сильный поражающий фактор ядерного взрыва, распространяется со сверхзвуковой скоростью во все стороны от места взрыва. Она представляет собой область резкого сжатия воздуха и область разрежения. Область сжатия движется впереди, а область разряжения - позади неё. Поражающее действие ударной волны продолжается несколько минут и обуславливается:

· максимальным избыточным давлением во фронте волны;

· скоростным напором воздуха;

· временем действия.

Полные разрушения от ударной волны характеризуются обрушением стен и перекрытий, каркаса и других несущих конструкций сооружений, что возможно при избыточном: давлении 40-80 кПа.

Сильные повреждения вызывают обрушение значительной части несущих стен и перекрытий при сохранении подвальных помещений и части каркаса. Такие повреждения возможны при избыточном давлении 20-50 кПа.

Слабые и средние повреждения зданий возникают при избыточном давлении 10-30 кПа в зависимости от конструкции сооружения.

Считается, что зона пожаров и разрушений доходит до границ, где избыточное давление от воздушной волны достигает 10 кПа.

Окопы, траншеи, убежища и особенности рельефа местности резко снижают воздействие ударной волны, что необходимо использовать для защиты людей и техники.

Световое излучение - это поток лучистой энергии в широком диапазоне. Источником светового излучения является светящаяся область взрыва. Время свечения огненного шара измеряется секундами, однако этого времени достаточно, чтобы вызвать массовые пожары, сильные ожоги открытых участков кожи и повредить глаза у незащищённых людей и животных. От воздействия светового излучения защищают все виды защитных сооружений, предметы из негорючих материалов и складки местности.

Проникающая радиация - поток гамма-излучения и нейтронов, исходящих в течение секунд из зоны ядерного взрыва в окружающую среду на расстояния до 3 км.

Проходя через биологическую ткань, гамма-излучение и поток нейтронов ионизируют молекулы, входящие в состав живых клеток. В результате этого нарушается характер жизнедеятельности клеток и возникает специфическое заболевание - лучевая болезнь.

Время действия проникающей радиации определяется временем подъема на такую высоту, когда гамма-излучение будет поглощаться толщей воздуха, не достигая поверхности земли. Поражающее действие проникающей радиации на людей зависит от дозы излучения и времени, прошедшего после взрыва. Оно оценивается суммарной дозой нейтронного и гамма-излучения, т.е. энергией излучения, которая поглощена единицей массы биологической ткани.

Радиоактивное заражение местности, атмосферы и различных объектов при ядерных взрывах вызывается:

· продуктами деления ядерного взрыва;

· наведенной активностью (радиацией);

· не прореагировавшей частью ядерного заряда.

Основной компонент при этом - продукты ядерной реакции (осколки деления ядер тяжелых элементов). Они представляют собой сложную смесь радиоактивных изотопов, выделяющих альфа-, бета- и гамма-излучения.

Поражающее действие радиоактивных излучений заключается в их ионизирующей способности, т.е. превращении нейтральных атомов в электрически заряженные ионы. Наибольшей ионизирующей способностью обладает альфа-излучение, наименьшей - гамма-излучение. Вместе с тем, гамма-излучение обладает высокой проникающей способностью (в воздухе - сотни метров). Степень ионизирующего воздействия на биологическую ткань зависит от величины поглощенной энергии излучения (абсолютно смертельная доза поглощённой ионизирующей энергии составляет примерно 1000 рад или 10 грей).

Размеры и конфигурация зон радиоактивного заражения при ядерных взрывах зависят от вида и мощности взрыва, направления и скорости ветра. Наиболее сильное заражение наблюдается при наземных взрывах.

Зоны радиоактивного заражения, имеющие разную степень опасности для людей, характеризуются как мощностью излучения на определенный момент времени после взрыва, так и прогнозируемой дозой радиации, получаемой до полного распада радиоактивных веществ.

По степени опасности зараженную местность, по следу облака взрыва, принято делать на следующие четыре зоны.

Зона А - умеренного заражения (40-400 рад), её площадь составляет 70-80% от всей поражённой площади.

Зона Б - сильного заражения (400-1200 рад). На долю этой зоны приходится около 10% площади радиоактивного следа.

Зона В - опасного заражения (1200-4000 рад). Эта зона занимает примерно 8-10% площади следа облака взрыва.

Зона Г - чрезвычайно опасного заражения (свыше 4000 рад).

Радиационные последствия от разрушения (аварии) ядерного объекта сопоставимы с радиационными последствиями, возникающими после применения ядерного боеприпаса. Однако, мощность излучения на местности, в случае разрушения реактора АЭС, всегда меньше, чем на следе ядерного взрыва, но сохраняется очень длительное время. При этом возможно заражение населения на прилегающей к атомной электростанции территории по пищевым цепочкам.

Наиболее опасно поступление с продуктами питания местного производства изотопов йода (J-131), цезия (Cs-137) и стронция (Sr-90). Короткоживущий J-131 опасен в первые два месяца, а Cs-137 и Sr-90 при попадании внутрь организма облучают его длительное время, так как период полураспада Cs-137 - 30,2 года, Sr-90 - 28,5 лет.

Поражающее действие электромагнитного импульса (ЭМИ) обусловлено возникновением напряжений и токов в различных проводниках. Действие ЭМИ проявляется, прежде всего, по отношению к электрической и радиоэлектронной аппаратуре. При этом может произойти пробой изоляции, повреждение трансформаторов, порча полупроводниковых приборов и др. Наиболее уязвимы линии связи, сигнализации и управления. Высотный взрыв способен создать помехи в этих линиях на очень больших площадях. Защита от ЭМИ достигается экранированием линий энергоснабжения и аппаратуры.

Нейтронные бомбы и снаряды представляют собой разновидность ядерных боеприпасов с термоядерным зарядом малой мощности. Поражающее действие нейтронных боеприпасов обусловлено повышенным нейтронным излучением. Для защиты от нейтронного поражения используются те же средства, что и при ядерном взрыве, основным из них является укрытие в защитных сооружениях.

Учитывая вышеизложенное, дадим следующее определение.

Очагом ядерного поражения называется территория, в пределах которой в результате воздействия ядерного оружия или катастрофы на АЭС произошло радиоактивное заражение местности, массовое поражение людей, сельскохозяйственных животных и растений, разрушение и повреждение различных сооружений, возникли пожары.

Размеры очага ядерного поражения зависят от мощности и, вида ядерного взрыва, от рельефа местности и характера застройки, погодных условий и других факторов.

10215 0

К очаговым повреждениям относят контузии или очаги первичного некроза коры мозга, интракраниальные гематомы, а также вторичные очаговые кровоизлияния и инфаркты.

Первичные травматические некрозы являются результатом непосредственного воздействия травмирующего агента на вещество мозга при открытых или закрытых ЧМТ; развиваются на месте удара или противоудара, на месте внедрения костных осколков, в стенках раневого канала и т. п.

При микроскопическом исследовании первичные контузионные травматические некрозы представляют собой очаги геморрагического размягчения или геморрагического пропитывания коры мозга. Микроскопическое исследование очага первичного некроза позволяет выделить: а)зону непосредственного тканевого разрушения; б)зону необратимых изменений; в) зону обратимых изменений.

Вторичные травматические (посттравматические) некрозы развиваются спустя некоторое время после травмы. Причиной их возникновения считают нарушения кровообращения, ликвородинамики, а также воспалительные процессы. На свежих срезах нефиксированного мозга вторичные некрозы выделяются в виде ишемических и геморрагических очагов размягчения в белом веществе, являющихся как бы продолжением очага первичного травматического некроза

Одной из причин возникновения вторичных периконтузионных некрозов, является снижение мозгового кровотока в этой зоне. Так, Y. Katayama с соавт, показали, что в центральной части очага контузии снижение кровотока до уровня ишемии наступает тотчас после нанесения травмы. В периконтузионной зоне кровоток вначале временно усиливается, а затем в течение 3 часов после травмы уменьшается до уровня ишемии. Через 6 часов после травмы тромбоз сосудов обнаруживается уже не только в очаге контузии, но и в периконтузионной зоне, что в конечном счете ведет к развитию вторичных некрозов.

Ушибы (контузии) мозга

Ушиб мозга является наиболее частой и общей макроскопической характеристикой травматического повреждения мозга, обнаруживаемой на КТ, МРТ головного мозга и на аутопсии. Хотя известно, что летальныгх исход части пострадавших с ЧМТ, особенно с ДАП, может наступить при минимальных макроскопических повреждениях мозга. Однако чаще всего, именно ушибы мозга, являются неопровержимым доказательством прижизненной или посмертной диагностики травматического повреждения мозга.

Изучением морфологии ушибов мозга занимались как отечественные, так и зарубежные патологи. Первый пик исследований пришелся на период после Второй мировой войны.

Морфологическая характеристика очага ушиба мозга, в общем, не имеет особых отличий, зависящих от возраста пострадавшего. Исключение составляют только случаи тяжелой ЧМТ у новорожденных и в раннем детском возрасте. В этой возрастной группе довольно часты разрывы белого вещества, особенно в лобной и височной долях.

Под ушибом мозга понимают очаг первичного некроза вещества мозга в сочетании с кровоизлиянием в эту зону. В очаге ушиба может преобладать кровоизлияние, в редких случаях первичный некроз может не сопровождаться кровоизлиянием.
Известны наиболее характерные участки локализации ушибов мозга при ЧМТ. Чаще всего очаги ушиба располагаются на выступающих поверхностях мозга, на вершине извилин, вплотную прилегающих к внутренней поверхности костей черепа. Это — полюса и орбитальные поверхности лобных долей (рис. 5—25), латеральная и нижняя поверхности височных долей и кора над и под сильвиевой щелью. Характерной локализацией ушиба мозга является кора конвекситальной поверхности мозга (рис. 5—26). Ушибы теменной и затылочной долей и мозжечка, встречаются при переломах костей черепа. На основании мозга, в области базальных субарахноидальных цистерн, ушибы мозга практически не встречаются. Значительно реже наблюдаются ушибы ствола мозга.


Рис. 5.25. Очаговое повреждение мозга. Ушиб орбитальной поверхности лобных долей.


Рис. 5.26. Очаговое повреждение мозга. Ушиб конвекситальной поверхности лобных долей.


Рис. 5.27. Ушиб мозга легкой степени. Сгруппированные точечные кровоизлияния.


Ушиб мозга возникает как в результате непосредственного воздействия механической энергии, так и в результате удара о противолежащие стенки черепа или большой серповидный отросток, мозжечковый намет. Ушиб мозга может возникнуть как при переломе костей, так и неповрежденных костях черепа.

В зависимости от механизма травмы ушибы мозга принято разделять на несколько подтипов:
1) Ушиб мозга на месте перелома костей. Локализация очагов ушиба в таких случаях совпадает с участком перелома костей и может наблюдаться как при открытой так и закрытой ЧМТ.

2) Ушиб мозга на месте приложения силы удара (Coup contusion). Ушиб мозга возникает в случаях, когда сила внезапного и локального вдавления костей черепа превышает толерантность прилежащих отделов мягкой мозговой оболочки и вещества мозга.Разрыв сосудов мягкой мозговой оболочки обычно является результатом сильного натяжения, которое возникает при быстром возвращении к своей нормальной конфигурации локально сдавленного эластичного участка кости. При превышении силы удара эластичности костей, происходит перелом костей черепа и ушиб прилежащего участка мозга.

3) Ушиб мозга, расположенный в противоположной стороне от места приложения удара (Contrecoup contusion). Классическим примером является ушиб полюсов лобных долей при падении на затылок.

4) Ушибы мозга от вклинения образуются от удара о край мозжечкового намета и большого затылочного отверстия, обнаруживаются на парагиппокамповых извилинах и миндаликах мозжечка. Чаще всего наблюдаются при огнестрельных ранениях, но могут встретиться и в случаях закрытой черпно-мозговой травмы.

5) Скользящий или парасагиттальный ушиб мозга или ушиб Lindenberga — названный так по имени автора, впервые описавшего этот вид ушиба мозга. В этих случаях, чаще всего при ДАП, обнаруживаются билатеральные, но несколько асимметричные очаги ушиба в конвекситальной коре.

Очаги ушиба различны по своей форме, величине, локализации численности. Очаги ушиба, располагающиеся в коре или в коре и прилежащем к коре белом веществе, в зарубежной литературе обозначают как «корковые контузии».

Л.И. Смирнов выделял следующие основные формы ушибов мозга:
1) крупные кортико-субкортикальные очаги геморрагического размягчения с разрывами мягких мозговых оболочек;
2) пятна коркового геморрагического размягчения при целости мягких мозговых оболочек, захватывающие всю толщу коры;
3) геморрагическое размягчение толщи коры при сохранности молекулярного слоя;
4) внутрикорковые пластинчатые (слоистые) размягчения, локализующиеся в большинстве случаев в третьем-четвертом слоях коры;
5) очаги контузионного размягчения, осложненные надрывами твердой мозговой оболочки и внедрением костных осколков в мозговое вещество.

При небольших размерах очага ушиба и локализации его не в жизненно важных структурах мозга, возможно самопроизвольное излечение больного. Так, в опубликованной в 1948 году сводке E. Welte о летальности в клинике общего профиля, среди 2000 умерших от соматических заболеваний, у 2,5% были найдены следы перенесенной ранее ЧМТ, в виде пигментированных рубцов на месте ушибов мозга.

Для объективизации оценки степени повреждения мозга в1985 году J. Adams с соавт. использовали так называемый контузионный индекс. Для этой цели авторы измеряли глубину и ширину очага ушиба в различных участках мозга. При этом границы очага ушиба определялись микроскопически, т.к. не имбибированная кровью некротическая зона при макроскопическом изучении обычно бывает трудно различима.

В результате проведенного исследования J. Adams с соавторами подтвердили, что:
а) ушибы мозга тяжелой степени чаще локализуются в лобной и височной долях, а также выше и ниже сильвиевой щели;
б) ушибы мозга тяжелой степени чаще являются результатом вдавленного перелома костей черепа;
в) независимо от того, приходился ли удар в лоб или затылок, ушиб мозга более тяжелой степени приходится на лобную долю;
г) в случаях несоответствия клиники тяжелой ЧМТ макроскопически неизмененному мозгу, выявляемому на КТ или аутопсии, необходимо тщательное микроскопическое исследование, которое позволит выявить ДАП.

В 1994 году G. Ryan с соавторами, разработали достаточно оригинальный метод количественной оценки степени ушиба мозга. Согласно предложенному протоколу, мозг после фиксации в формалине, разрезается на 116 секторов по предложенной схеме. Обнаруженные в каждом секторе макро- и микроскопические изменения фиксируются и наносятся на диаграммы. Этот метод позволяет детализировать информацию о распространенности повреждений в различных анатомических образованиях мозга, что крайне необходимо при изучении биомеханики ЧМТ.

В соответствии с принятой в нашей стране клинической классификацией ЧМТ, принято выделять три степени тяжести ушиба мозга.

Ушиб мозга легкой степени

Характеризуется наличием сгруппированных точечных кровоизлияния в коре мозга (рис. 5—27), нередко в сочетании с ограниченным субарахноидальным кровоизлиянием. Организация очага некроза или кровоизлияния в коре начинается уже через 15 часов после травмы и заканчивается формированием очага клеточного глиоза.

При ограниченных субарахноидальных кровоизлияниях, не сопровождающихся нарушением целостности лептоменингса, в течение первых 5— 7 дней происходит резорбция излившейся крови макрофагами. Кровоизлияние в поверхностные отделы коры приводит к очаговому разрушению концевых ветвей апикальных дендритов нейронов, расположенных в глубоких слоях коры; возможны некробиотические изменения ассоциативных и вставочных нейронов II — IV слоев коры, наиболее ранимых при гипоксии, микроциркуляторных нарушениях.

Ушиб мозга средней степени

Характеризуется наличием очага первичного некроза коры и прилежащих отделов белого вещества одной или нескольких извилин с диффузным геморрагическим пропитыванием или мелкоочаговыми кровоизлияниями (рис. 5—28).

Последовательные изменения очага ушиба подробно описаны в работах Л.И. Смирнова, R. Lindberg (93, 94), Н.А. Сингур.
Изменение тинкториальных свойств тканей, отражающих развитие некробиотических процессов, переходящих в некроз, ишемические и отечные изменения нейронов, обнаруживаются через 40 минут после травмы.

Характерную клиновидную форму контузионный очаг приобретает уже через 4—5 часов. В перифокальной зоне отмечается плазмаррагия вокруг капилляров и венул, краевое стояние лейкоцитов в сосудах, единичные лейкоциты проникают в поврежденную ткань. Через 8 часов очаг ушиба пропитывается кровью.

В случаях первичных мелкоочаговых кровоизлияний могут обнаруживаться сосуды с разрывами стенок. В течение первых 3 дней зона ушиба представлена некротизированной тканью мозга с кариорексисом, плазмолизом, очаговым скоплением лейкоцитов. В это же время появляются единичные зернистые шары. Через 6—9 дней в очаг первичного некроза активно врастают новообразованные сосуды, располагающиеся среди зернистых шаров. К концу второй недели зона непосредственного повреждения заполняется зернистыми шарами. Через 3—4 месяца зона повреждения замещена очагом волокнистого глиоза (глиальный рубец) или глиомезодермальным рубцом. Среди аргирофильных и глиальных волокон сохраняются единичные макрофаги/зернистые шары.

Ушиб мозга тяжелой степени

Характеризуется разрушением мозговой ткани с разрывами мягкой мозговой оболочки (рис. 5—29). Первичный очаг травматического некроза захватывает кору и субкортикальное белое вещество. Обширные очаги разрушения мозга (размозжения) (рис. 5—30), могут захватывать одну или несколько долей и распространяться вглубь до подкорковых узлов.
Соотношение мозгового детрита и количества излившейся крови значительно варьируют в разныгх случаях (рис. 5 — 31; 5—32). На протяжении 3 — 4 суток после травмы могут возникать эрозивные кровоизлияния, обусловленные фибриноидными некрозами стенок сосудов.



Рис. 5.28. Ушиб мозга средней степени. Фронтальный срез полушарий мозга, проведенный через клюв мозолистого тела. Контузионный очаг с кровоизлиянием на орбитальной поверхности левой лобной доли.




Рис. 5.29. Ушиб мозга тяжелой степени, захватывающий лобную и височную доли. Разрыв мягких мозговых оболочек.



Рис. 5.30. Ушиб мозга тяжелой степени. Размозжение полюсов лобных долей, субарахноидальное кровоизлияние, вторичное кровоизлияние в ствол мозга.




Рис. 5.31. Мозговой детрит в очаге ушиба, х200 (импрегнация серебром по Бильшовскому).



Рис. 5.32. Кровоизлияние в зоне ушиба мозга, х100 (гематоксилин-эозин).


При обширных очагах ушиба (размозжения) процессы организации некроза замедляются. Через 4—6 недель после травмы можно обнаружить врастание новообразованных сосудов только в периферические отделы очага. При ушибе мозга тяжелой степени развивается общее нарушение мозгового кровообращения (рис. 5—33; 5—34), выражающееся в стазах крови, тромбозах сосудов мозга, диапедезных кровоизлияниях в стенках желудочков. В течение 4—5 месяцев после травмы и до 1,5 лет на месте очагов травматических некрозов, гематом, формируются компактные, пористые, кистозные, часто пигментированные рубцы и посттравматические кисты,содержащие ксантохромную жидкость.

Сдавление мозга

Наиболее частой причиной местного (очагового) сдавления мозга при ЧМТ, оказываются эпидуральные и субдуральные гематомы (рис. 5—35), а также обширные вдавленные переломы костей свода черепа. Причиной сдавления мозга может быть и пнвмоцефалия (5, 8). Разумеется, не все случаи поди надоболочечных внутричерепных кровоизлияний приводят к сдавлению мозга и развитию компрессионного синдрома. Симптомокомплекс сдавления мозга возникает, обычно, при нарастающей ограниченной гематоме, что может привести в конечном итоге к дислокации отдельных частей мозга.

Причиной общего сдавления мозга с дислокацией ствола может быть диффузное набухание мозга, вследствие отека или гиперемии, повышенное внутричерепное давление. Таким образом, местное или общее сдавление мозга может быть осложнением различных видов ЧМТ.

Время развития симптомокомплекса сдавления мозга зависит от количества излившейся крови и локализации гематомы. Так, эпидуральная гематома объемом около 70 мл излившейся крови, возникшая вследствие повреждения средней оболочечной артерии, вызывает компрессионный и гипертензионный синдром в первые часы или дни после ЧМТ. Тогда как при субдуральной гематоме, значительно большей по объему излившейся крови около 150 мл, синдром сдавления мозга может развиться через дни и недели.

В случаях сочетания под- и надоболочечных гематом с ушибом мозга, довольно сложно бывает определить степень изменения мозга, вызванного локальным ушибом. Как в случаях вдавленного перелома, в месте сдавления мозга развивается очаг геморрагического размягчения, так и при ушибе мозга.

При отсутствии очагов ушиба мозга, в течение первых суток после субдурального или эпидурального кровоизлияния в веществе мозга, прилежащем к оболочечным гематомам, могут обнаружиться рассеянные петехиальные или мелкоочаговые кровоизлияния, полнокровие сосудистой системы. В последующие сутки нарастают нарушения микроциркуляции в коре мозга, увеличивается число ишемически измененных, так называемых «красных нейронов».

При медленном нарастании давления, что чаще наблюдается в случаях хронической эпидуральной гематомы и хронической субдуральной гематомы, увеличиваются дистрофические изменения в подлежащем участке коры, что приводит к постепенной гибели нейронов и формированию в коре мозга очажков неполного некроза с заместительным глиозом.

Повреждения черепных нервов

Открытая и закрытая травма головы, особенно в сочетании с переломами костей основания черепа, часто сопровождается повреждением черепных нервов. Наиболее повреждаемая часть черепных нервов, это участок между их внутрикостной и внутричерепной частями. При аутопсии, обычно, черепные нервы отсекаются выше места их входа в кости черепа и потому нет достаточно полного представления о частоте повреждения каждого черепного нерва, за исключением обонятельного нерва.

Известно, что травма первой пары черепно-мозговых нервов, являющаяся основной причиной потери обоняния, встречается, приблизительно, в 7% случаев ЧМТ. Ушиб орбитальной поверхности лобных долей и переломы орбитальной пластинки часто сопровождается ушибом луковицы обонятельного нерва.

Перелом костей передней черепной ямки может быть причиной травматического повреждения зрительного нерва и зрительного тракта. Наиболее уязвимой и, потому, наиболее часто травмируемой частью зрительного нерва является его интраканаликулярный участок. В результате ЧМТ могут возникнуть первичные и вторичные повреждения зрительных нервов.

К первичным повреждениям зрительного нерва относятся вызванные механической силой и происшедшие во время ЧМТ, субдуральные и субарахноидальные кровоизлияния, как в интраорбитальном, так и интракраниальном отрезках нерва, Кроме того, к первичным травматическим повреждениям зрительного нерва можно отнести вызванные ударной волной контузионные некрозы в паренхиме нерва, а также первичные повреждения аксонов.

Вторичные повреждения зрительного нерва являются результатом отека паренхимы самого нерва или диффузного отека полушарий мозга. Иногда наблюдаемое при отеке мозга сдавление хориоидальной артерии, может привести к инфаркту зрительного нерва. Вторичный некроз зрительного нерва может быть вызван локальной окклюзией глазничной артерии и ее ветвей. Возможны вторичные кровоизлияния в оболочки и паренхиму нерва.

При тяжелой травме черепа с переломом вершины орбиты и при разрыве сфеноидальной щели, может наступить повреждение III, IV и VI нервов и офтальмической ветви V нерва. III, IV и V пары черепно-мозговых нервов могут быть разрушены не только непосредственно костными отломками, но также вторично, при тенториальном вклинении ствола мозга, тромбозе кавернозного синуса или развитии травматической каротидно-кавернозной фистулы.

В литературе имеются только единичные сообщения о случаях травмы других черепно-мозговых нервов.

Так, тройничный нерв и его интраорбитальная часть могут быть травмированы при переломе основания средней черепной ямки.

Перелом пирамидки височной кости может травмировать VII и VIII нервов, что может встретиться при лобно-затылочном направлении силы удара.

Травматическое повреждение других пар черепно-мозговых нервов описаны в случаях огнестрельных ранений.

Повреждение артерий

П ри люб о м виде Ч М Т могут наблюдаться случаи разрыва, отрыва артерий, тромбоза их просвета, образование артерио-венозной фистулы интракраниальной артерии. Посттравматическая артериовенозная фистула образуется исключительно в кавернозном синусе.

В посттравматическом периоде наиболее часто встречается тромбоз общей или внутренней сонной артерии, значительно реже обнаруживается тромбоз вертебральной артерии и еще реже — тромбоз остальных интракраниальных артерий. При этом прямой зависимости характера повреждения артерии от тяжести самой травмы не замечено.

К повреждению общей сонной артерии или внутренней сонной артерии может привести травма шеи, перелом костей основания черепа, длительное латеральное сгибание или натяжение шеи. Тромбоз поврежденной сонной артерии развивается в течение нескольких часов, дней или даже недель после травмы. Описаны случаи посттравматического тромбоза супраклиноидной части внутренней сонной артерии и средней мозговой артерии. Результатом тромбоза артерий является ишемический инфаркт мозга.

Наиболее частая локализация очага повреждения вертебральных артерий, это — отрезок между 5 и 6 шейными позвонками.
Перелом костей основания черепа или проникающее ранение каротидного канала способствуют разрыву стенки артерии и истечению крови в кавернозный синус, что приводит к венозному полнокровию глаза, экзофтальму и другим характерным признакам.

При двустороннем каротидно-кавернозном соустии, из-за уменьшения притока артериальной крови в мозг, может развиться ишемическое повреждение мозга. Посттравматическое каротидно-кавернозное соустье обнаружено у 2% пациентов, переживших тяжелую ЧМТ, особенно в случаях, когда сила удара была направлена в лобно-височную область.

Травматические аневризмы интракраниальных артерий образуются на ветвях средней мозговой артерии и передней мозговой артерии. Болыиинство травматических аневризм являются ложными. В этих случаях поврежденный участок стенки артерии представлен организующейся гематомой, прилежащей к сосуду и окружающей ее. Аневризматическое расширение ослабленной стенки сосуда может наблюдаться в случаях частичного повреждения сосуда без его разрыва.
Основные отличия травматической аневризмы от артериальной аневризмы — это локализация ее дистальнее места развилки виллизиева круга, отсутствие шейки аневризмы, неровные контуры мешка.

В то же время, травма может способствовать разрыву предшествующей артериальной аневризмы или артериального выпячивания. Для дифференциальной диагностики необходимо дополнительное гистологическое исследование артерии, окраска на эластику. В случаях истинной артериальной аневризмы выявляется нарушение гистоструктуры эластической мембраны.

Травма мозга, без переломов и трещин костей основания черепа, особенно в случаях атеросклеротически измененных артерий основания мозга, может привести к тромбозу артерии. Причиной этого может быть отрыв мышечного слоя артерии от адвентиции, особенно в участках расположения атеросклеротической бляшки и образование расслаивающейся аневризмы.

Кроме травмы артерий с последующим тромбозом их просвета, после травмы головы может развиться тромбоз синусов твердой мозговой оболочки и корковых вен, что также ведет к очаговому нарушению мозгового кровотока.

Повреждения гипофиза и гипоталамуса

По данным C. Harper c соавт., из 100 летальных случаев ЧМТ, приблизительно в 38 случаях обнаруживается инфаркт передней доли гипофиза.

Причины повреждения гипофиза различны, в том числе перелом костей основания черепа, захватывающий турецкое седло; повышенное внутричерепное давление, ведущее к сдавлению и разрушению стебля гипофиза; гипотензивный шок. Во время ЧМТ может оторваться ножка гипофиза от серого бугра, что ведет к инфаркту передней доли гипофиза.
Прижизненная диагностика повреждения гипоталамуса и стебля гипофиза стала возможной благодаря современным методам визуализации мозга, в частности МРТ.

Переломы костей черепа

Почти 2/3 всех переломов костей черепа приходится на долю закрытой ЧМТ. Различают переломы свода, основания черепа и комбинированные переломы свода и основания черепа.

Из костей, составляющих свод черепа, на первом месте по частоте переломов стоит теменная кость, затем лобная, реже — затылочная и височная кости.

Вдавленные переломы свода черепа возникают, когда повреждающая сила действует на ограниченную площадь (рис. 5—36). Оскольчатые переломы и сквозные трещины возникают при воздействии тупой силы на обширный участок черепа (рис. 5—37). Особенно часто встречаются неполные переломы, при котором повреждается целостность внутренней пластины кости.

Рис. 5.35. Горизонтальный срез полушарий мозга на уровне островка. Деформация переднего рога правого бокового желудочка мозга, вызванная сдавлением субдуральной гематомой, располагавшейся в правой лобно-височной области .




Рис. 5.36. Перелом костей свода ударом топора по голове (препарат П. О. Ромодановского)




Рис. 5.37. Множественный перелом костей свода черепа (препарат П. О. Ромодановского).


Переломы основания черепа чаще обнаруживаются в средней черепной ямке, затем в передней и задней черепной ямок. Возможны множественные трещины, идущие через все основание черепа или захватывающие две смежные черепные ямки.
В значительной части случаев переломы основания черепа являются продолжением перелома свода и имеют вид трещин или возникают на отдалении от места приложения повреждающей силы. Могут возникнуть при ударе по лицу или при падении на ноги.

Тяжесть травмы определяется не самим переломом костей, а объемом и глубиной повреждения мозговой ткани. Возможны случаи обширного повреждения черепа при сохранности содержимого черепа. Довольно часто переломы свода черепа сопровождаются ушибом мозга, чаще в местах переломов костей и реже по механизму противоудара. Костные осколки могут повредить целостность твердой мозговой оболочки, ее сосудов и синусов, могут внедриться в вещество мозга.
При переломах основания черепа часто наблюдается разрыв твердой мозговой оболочки, что создает угрозу возникновения различных инфекционных осложнений; смещение костных отломков при переломах свода черепа обычно небольшое.

Переломы основания черепа часто сопровождаются внутричерепными кровоизлияниями и повреждением черепно-мозговых нервов.

Очаг массовых поражений - это территория, на которой в результате воздействия оружия массового поражения (ядерного, химического) возникли массовые поражения людей, повреждения и разрушения гражданских, промышленных и оборонительных сооружений (объектов), порча и уничтожение различных материальных ценностей.

Очаги массовых поражений могут возникать во внутреннем районе страны и на театре военных действий. В зависимости от вида примененного противником оружия массового поражения и условий обстановки очаги имеют свои особенности. Однако они характеризуются и общими чертами: массовостью потерь и их возникновением в сравнительно короткие отрезки времени (иногда одномоментно); большими размерами площади; полной (в ряде случаев) или частичной утратой работоспособности сил и средств медицинской службы войск (формирований медицинской службы ГО) и учреждений органов здравоохранения. Во внутреннем районе страны размеры очага массовых поражений и, следовательно, величина потерь в нем подвержены значительным колебаниям и определяются в основном видом оружия и способом его применения, мощностью и количеством примененных боеприпасов, плотностью населения (войск) и степенью его защиты, характером местности и метеорологических условий, а также другими факторами. Очаг массовых поражений может иметь площадь, занимаемую отдельными промышленными и другими крупными народнохозяйственными и военными объектами. Например, площадь очага поражения атомными бомбами среднего калибра, примененными США в 1945 г. по японским городам, составила в Хиросиме свыше 24, а в Нагасаки - 18 км 2 , число жертв соответственно 136 и 64 тыс. человек.

Степень утраты работоспособности медицинского состава, лечебных и других медицинских учреждений также может быть значительной. В Хиросиме 90% врачей было убито или ранено; из 45 городских больниц только 3 могли принимать пораженных и оказывать им медпомощь. Площадь очагов заражения отравляющими веществами и величина потерь в них могут быть также довольно большими.

Конфигурация очага в основном определяется видом оружия и способом его применения, характером рельефа местности и растительного покрова, метеорологическими и другими условиями обстановки. Форма очага массовых поражений при воздушных ядерных взрывах обычно ближе к кругу с неровными краями, что зависит от рельефа местности и растительного покрова, характера застройки населенного пункта и других факторов (радиус поражающего действия увеличивается вдоль лощин, широких улиц, в сторону районов с низкими деревянными застройками, по направлению ветра и, наоборот, меньше в сторону лесных массивов, холмов, кварталов застройки высокими зданиями и т. п.). При наземном ядерном взрыве, кроме того, создается сигарообразной формы полоса заражения местности РВ в зоне, прилегающей к центру взрыва, и по направлению ветра (след радиоактивного облака). Уровень радиации на местности в районе взрыва и на следе радиоактивного облака (см. Ядерное оружие) может достигать значительных величин, особенно вблизи эпицентра взрыва и на оси следа. По мере увеличения расстояния от места взрыва и к периферии от оси следа этот уровень постепенно снижается (см. рис. 2 к ст. Ядерное оружие).

В очаге массовых поражений ядерным оружием возможны обширные разрушения наземных к подземных сооружений, образование завалов и пожаров. Последние, сливаясь, образуют огненные штормы (в Хиросиме площадь пожаров составляла 11,5 км 2 , т. е. почти половину всей площади очага).

Тяжесть поражения людей в очаге уменьшается по мере удаления от эпицентра взрыва по всем направлениям. Выделяют три зоны поражения: прилегающую к эпицентру зону полных разрушений зданий и других сооружений (подвальные части зданий могут сохраниться), гибели и крайне тяжелых поражений людей; зону сильных разрушений зданий и тяжелых и средней тяжести поражений людей; зону слабых разрушений зданий (главным образом оконных переплетов, дверей, внутренних перегородок, кровли) и легких а реже средней тяжести поражений людей.

У основной массы пострадавших в очаге массовых поражений ядерным оружием будут ударной волной и световым излучением, а иногда и проникающей радиацией. Изолированные травмы, ожоги и будут более редким явлением. На следе радиоактивного облака возможно поражение людей ионизирующим излучением.

План лекции (1 час)

      Очаг радиационного поражения.

      Очаг химического заражения.

      Очаг бактериологического поражения.

4.1. Очаг радиационного поражения.

Из многочисленных очагов поражения, возникающих в резуль­тате различных стихийных бедствий, наиболее значительными по масштабам последствий являются очаги, образующиеся при земле­трясении и наводнения, а также при авариях на АЭС и других объектах ядерной энергетики, на предприятиях имеющих СДЯВ и производствах со взрыво и пожароопасный технологией.

Очаг поражений при землетрясении – очагом поражений при землетрясении называется территория, в пределах которой произош­ли массовые разрушения и повреждения зданий, сооружений и др. объектов, сопровождающиеся поражениями и гибелью людей, живот­ных. Очаги массового поражения возникают обычно в зоне земле­трясения, где интенсивность его по шкале Рихтера составляет 7-3 баллов и более, при этом здания и сооружения получают силь­ные разрушения.

Очаги поражения на предприятиях со взрывоопасной и пожаро­опасной технологией образуется вследствии истечения к газооб­разных продуктов при перемешивании которых с воздухом образуют­ся взрывоопасные смеси как пропилен, метан, бутон и др. приво­дящие к разрушению и повреждению знаний, сооружений, емкостей, трубопроводов. Взрыв иди возгорание наступает при определенном содержании газа в воздухе. При взрыве газовоздушной смеси об­разуется ударная волна подобная ударной волне ядерного взрыва.

Очагом поражения при наводнении называется территория в пределах которой произошла затопление местности, повреждения и разрушения зданий, сооружений, сопровождающиеся гибелью лю­дей, животных.

Очаги радиактивного заражения образующиеся в результате аварии на АЭС и др.объектах ядерной энергетики, аналогичны очагам возникающим при применении ядерного оружия (см.ядерное оружие).

Очагом ядерного поражения называется территория в преде­лах которой в результате воздействия поражающих факторов ядерного взрыва произошли массовые поражения людей, животных, рас­тений, разрушения и повреждения зданий, сооружений.

Размеры очага поражения зависят от мощности взрыва и вида ядерного взрыва, местности и метеоусловий

Ядерным ору ж ием называются боеприпасы, поражающее действие которых основано на использование внутриядерной энергии, осво­бождающиеся при взрывах атомной бомбы. Оно является самым мощ­ным из всех средств поражения.

Характеристика очагов поражения

Ядерное, химическое и бактериальное оружие является ору­жием массового поражения. Его применение может привести в ко­роткие сроки к уничтожению, разрушению или повреждению мате­риальных ценностей, возникновению массовых потерь среди насе­ления, сельскохозяйственных животных, растений.

Оценка обстановки позволяет уточнить число пораженных на объектах, рассчитать необходимое количество сил и средств ме­дицинской службы, определить задачи и организовать лечебно-эвакуационные мероприятия.

К поражающим факторам ядерного взрыва относятся:

Ударная волна, световое излучение, проникающая радиация.

Ударна я во лна – наиболее сильный поражающий фактор ядер­ного взрыва. В зависимости в какой среде она возникает и расп­ространяется различают – воздушн ы й , в воде – ударной , в грунте – самовзрывной.

Ударная волна, воздействуя на незащищенных людей, способ­на нанести им серьезные травмы. Скорость движения и расстояние на которое распространяется ударная волна, зависят от мощности ядерного взрыва.

Основной способ защиты людей от ударной волны – укрытие в защитных сооружениях.

Ударная волна ядерного взрыва, как и при взрыве обычных способна наносить человеку различные травмы, в том числе и смертельные. Поражение людей вызываются как непосредственным (прямым воздействием воздушной ударной волны, так и косвенным).

При прямом воздействии ударной волны возможны повреждения внутренних органов, разрыв кровеносных сосудов, барабанных пе­репонок, сотрясение мозга, различные переломы и др.

Характер и тяжесть поражения людей зависят от величины параметров

ударной волны и степени защищенности человека.

Косвенное воздействие ударной волны заключается в пораже­нии людей летящими обломками зданий, сооружений, камнями, би­тым стеклом и др.предметами.

Свет о вое из лу чение – поток лучистой энергии, включающих ультрофиолетовые, видимые и инфракрасныеизлучения.

Источником светового излучения является огненный шар ядер­ного взрыва, температура в котором достигает несколько миллио­нов градусов.

Световое излучение способно вызывать у незащи­щенных людей ожоги различной степени, сильные пожары.

Световое излучение в зависимости от значения величины светового импульса различают ожоги ІҮ степеней.

Ожог I степени – характеризуется покраснением,

П степени – образованием пузырей наполненных жидкостью,

Ш степени – образование язвы,

1Ү степени – омертвление глубоких слоев кожи. Тяжесть поражения световым излучением зависит не только от степени ожога, а от места и площади обоженной поверхности кожи.

Степень поражающего действия светового излучения резко снижается при условии своевременного оповещения людей, исполь­зования ими защитных сооружений, индивидуальных средств защиты и строгого выполнения противопожарных мероприятий.

Защитой от светового излучения могут служить различные предметы создающие тень, убежища, укрытия.

Проникающая радиация – это поток гамма лучей и нейтронов. Проходя через живую ткань она нарушает нормальную жизнедеятель­ность клеток организма и приводит к возникновению лучевой бо­лезни. "Степень заболевания лучевой болезнью зависит от полу­ченной дозы ионизирующего излучения.

Радиактивное заражение – местности, воды и других объек­тов возникает в результате выпадения радиактивных веществ из облака ядерного взрыва. Радиактивное заражение местности может быть опасным на протяжении нескольких недель после взрыва.

Источниками радиактивного излучения при ядерном взрыве являются: радиактивные изотопы, продукты деленияядерных вз­рывчатых веществ.

На местности подвергшейся радиактивному заражению по степени опасности определяются четыре зоны:

1 зона А – умеренного заражения площадью 70-80% от площади всего следа взрыва. Уровень радиации 8 р/г;

П зона_Б_– сильного заражения площадью 10% площади радиактив­ного следа, уровень радиации 80 р/г;

Ш зона_В_– опасного заражения, площадью 8-10%, уровень радиации 240 р/г;

1Ү зона Г – чрезвычайно опасного заражения - площадью 2-3%, уровень радиации 800 р/г.

В результате воздействия ядерного оружия отмечаются тя­желые поражения людей. Лучевая болезнь затрудняет течение и лечение травм, ожогов, снижает сопротивляемость организма че­ловека и инфекционным заболеваниям. 3 населенных пунктах при ядерных взрывах могут возникнуть пожары, завалы, разрушения сооружений, выход из строя техники.

В заключении, основным способом защиты населения в очаге ядерного поражения является укрытие в защитных сооружениях.

Характер последствий аварий, катастроф и др.стихийных бедствий зависит от вида аварий, её масштабов, особенности предприятий (вида транспорта). Как правило следствием крупных аварий является взрывы, пожары в результате чего разрушаются здания, повреждается техника, оборудование, гибнут люди. В ряде случаев это загрязняет атмосферу, разлив нефтепродуктов, а также сильнодействующих ядовитых веществ.

Наибольшую опасность загрязнения атмосферы воды и про­дуктов питания РВ представляют аварии на атомных электростан­циях. Глубина проникновения РВ в продовольствие и питьевую воду зависит от способа хранения и состояния тары и вида про­довольствия. Степень заражения атмосферы питьевой воды и про­дуктов 0В зависит также от вида 0В, его физического состояния количеству 0В.

В последовательности развития чрезвычайных ситуаций можно выделить три характерные фазы.

  • ? 1-я фаза - накопление дефектов в оборудовании или отклонений от нормального состояния или процессов. Эта фаза может длиться минуты, сутки или даже годы. Сами по себе дефекты или отклонения еще не приводят к аварии, но готовят почву для нее. Операторы, как правило, не замечают этой фазы из- за невнимания к регламенту или из-за недостатка информации о работе объекта, так что у них не возникает чувства опасности.
  • ? 2-я фаза - происходит неожиданное и редкое событие, которое существенно меняет ситуацию. Операторы пытаются восстановить нормальный ход технологического процесса, но, не обладая полной информацией, зачастую только усугубляют развитие аварии. В этот период в ряде случаев еще может существовать реальная возможность либо ее предотвратить, либо существенно уменьшить ее последствия.
  • ? 3-я фаза - на этой фазе еще одно неожиданное событие - иногда совсем незначительное - играет роль толчка, после которого техническая система перестает подчиняться людям и происходит катастрофа.

На третьей фазе развития чрезвычайной ситуации образуется очаг поражения.

Очаг поражения - ограниченная территория, в пределах которой под воздействием поражающих факторов ЧС произошли массовая гибель или поражение людей различной степени тяжести, уничтожение сельскохозяйственных животных и растений, значительные разрушения или повреждения зданий, сооружений, технологического оборудования, нанесен ущерб окружающей природной среде.

Очаги поражения могут быть простыми (при воздействии одного поражающего фактора) и комбинированными (при воздействии двух и более поражающих факторов), они могут иметь на местности различные очертания.

Для оценки ущерба, причиненного объекту, установлены следующие степени разрушения зданий, сооружений, технологического оборудования.

  • 1. Полное разрушение :
    • а) для зданий и сооружений - обрушение всего сооружения, в пределах периметра здания образуется сплошной завал, здание не подлежит ремонту, подвальные и цокольные этажи полностью разрушены;
    • б) для технологического оборудования - приходит в полную негодность. Ущерб от разрушения составляет 90-100% балансовой стоимости объекта.
  • 2. Сильное разрушение :
    • а) для зданий и сооружений - разрушение части стен и перекрытий нижних этажей и подвалов, в результате чего повторное использование помещений невозможно или нецелесообразно;
    • б) для технологического оборудования - смещение с фундаментов, деформация станин, трещины в деталях, изгиб валов и осей, повреждение электропроводки, ремонт и восстановление, как правило, нецелесообразны; ущерб составляет 50-90%.
  • 3. Среднее разрушение :
    • а) для зданий и сооружений - разрушение внутренних перегородок, дверей, окон и перекрытий, появление трещин в стенах и в оборудовании чердачных перекрытий, подвалы сохраняются, восстановление возможно в порядке проведения капитального ремонта;
    • б) для технологического оборудования - повреждение и деформация основных деталей, повреждение электропроводки, приборов автоматики, использование оборудования возможно после капитального ремонта; ущерб составляет 30-50%.
  • 4. Слабое разрушение :
    • а) для зданий и сооружений - разрушение оконных и дверных заполнений и легких перегородок, появление трещин в стенах верхних этажей, восстановление возможно в порядке проведения среднего ремонта;
    • б) технологического оборудования - повреждение шестерен и передаточных механизмов, обрыв маховиков и рычагов управления, разрыв приводных ремней, восстановление возможно без полной разборки с заменой поврежденных частей; ущерб составляет 10-30%.

Для определения возможного характера разрушений, ущерба и установления объема аварийно-спасательных и других неотложных работ в очаге поражения в условиях ЧС условно выделяются следующие зоны:

  • ? зона полных разрушений - может возникнуть при воздействиях ударной волны с избыточным давлением 50 кПа и более, интенсивности землетрясения 11-12 баллов, урагана 17 баллов (скорость ветра более 64 м/с);
  • ? зона сильных разрушений - может возникнуть при воздействиях ударной волны с избыточным давлением 30-50 кПа, интенсивности землетрясения 9-10 баллов, урагана 16 баллов (53,5 м/с);
  • ? зона средних разрушений - может возникнуть при ударной волне с избыточным давлением 20-30 кПа, землетрясений с интенсивностью 7-8 баллов, урагана 14-15 баллов (44-49 м/с);
  • ? зона слабых разрушений - возникает при воздействии ударной волны с избыточным давлением 10-20 кПа, землетрясении 5 баллов, урагана 12-13 баллов (33-40 м/с).

Контрольные вопросы и задания

  • 1. Перечислите общие признаки, характеризующие чрезвычайную ситуацию.
  • 3. Назовите основные законодательные и подзаконные акты РФ по ЧС.
  • 3. Какие группы стандартов входят в комплекс стандартов «Безопасность в ЧС»? Дайте краткую характеристику стандартов каждой группы. Покажите на примерах структуру обозначения стандартов комплекса БЧС.
  • 4. Сформулируйте понятия «чрезвычайная ситуация», «авария», «катастрофа», «стихийное бедствие».
  • 5. По каким признакам осуществляется классификация ЧС? Приведите примеры классификаций ЧС.
  • 6. Назовите критерии отнесения ЧС к локальной, местной, территориальной, региональной, федеральной, трансграничной.
  • 7. Назовите три характерные фазы развития техногенной ЧС.
  • 8. Сформулируйте понятие очага поражения.
  • 9. Назовите характерные зоны в очаге поражения и дайте их характеристику.


Последние материалы раздела:

Сколько в одном метре километров Чему равен 1 км в метрах
Сколько в одном метре километров Чему равен 1 км в метрах

квадратный километр - — Тематики нефтегазовая промышленность EN square kilometersq.km … квадратный километр - мера площадей метрической системы...

Читы на GTA: San-Andreas для андроид
Читы на GTA: San-Andreas для андроид

Все коды на GTA San Andreas на Андроид, которые дадут вам бессмертность, бесконечные патроны, неуязвимость, выносливость, новые машины, парашют,...

Классическая механика Закон сохранения энергии
Классическая механика Закон сохранения энергии

Определение Механикой называется часть физики, изучающая движение и взаимодействие материальных тел. При этом механическое движение...