Генетика пола. Наследование признаков сцепленных с полом. XII. Наследование признаков, сцепленных с полом

Н

Наследование - процесс передачи наследственных задатков или наследственной информации от одного поколения другому. Наследование каждого признака характеризуется определенным типом, например моногенным и полигенным.

Наследование крест-накрест - тип наследования, при котором признаки отца наследуют только дочери, а сыновья наследуют только признаки матери. Наследование крест-накрест обусловлено сцеплением с полом локализованных в половой X-хромосоме генов, причем гомогаметный родитель гомозиготен по рецессивному аллелю и гетерогаметпый - по доминантному аллелю. Закономерности этого наследования используют в птицеводстве при межпородном скрещивании.

Наследование, ограниченное полом - тип наследования признаков, фенотипически проявляющихся только у одного пола, хотя гены данных признаков содержатся в аутосомах и половых хромосомах обоих полов. Таким образом, понятие "наследование, ограниченное полом", не связано с механизмом наследственной передачи. Примерами признаков, ограниченных полом, являются молочная продуктивность скота и яйценоскость кур, которые обусловлены генами, имеющимися и у самок, и у самцов, но проявляющимися только у самок; установить генотип самцов по данным признакам можно только по продуктивности их женских предков, сестер и полусестер и женских потомков.

Наследование полигенное - тип наследования, обусловленный действием многих генов, каждый из которых оказывает слабый эффект. К этому типу наследования относится большинство хозяйственно полезных признаков. Особенности этого наследования состоят в следующем: 1) средняя арифметическая первого поколения - чаще всего промежуточная между средними арифметическими родительских форм, 2) средняя арифметическая второго поколения (F 2) примерно равна средней арифметической F 1 , но изменчивость животных значительно больше, чем вариация особей F 1 , 3) кривые распределения животных из возвратных скрещиваний F 1 на каждого из родителей сдвинута ближе к кривым расщепления тех же родительских форм, с которыми произведено скрещивание. В принципе это наследование не отличается от моногенного. Однако оно требует весьма трудоемких исследований по анализу действия конкретных генов и к тому же возможно только у немногих генетически хорошо изученных организмов. В практике животноводства поэтому используют статистические методы для выделения доли генетической изменчивости в общей вариации полигенного признака.

Наследование приобретенных признаков - созданная Ламарком недоказанная теория, в соответствии с которой среда изменяет не только фенотип, но и генотип в определенном направлении. В настоящее время установлено, что изменение фенотипа под влиянием среды (модификация) не наследуется и не изменяет генотип.

Наследование, сцепленное с полом - тип наследования признаков, гены которых локализованы в половых хромосомах. Большинство известных групп сцепления локализованы в Х-хромосоме, поэтому ген, находящийся в половой хромосоме самца любого вида млекопитающих, будет передаваться его дочерям, а не сыновьям. Наоборот, если рецессивный ген имеется в одной из X-хромосом самки, то этот сцепленный с полом ген может передаваться половине не только сыновей, но и дочерей самки. Наследование, сцепленное с полом, в птицеводстве, где составлена карта сцепленных с полом генов, имеет практическое значение для определения пола цыпленка сразу же при его вылуплении и для выведения аутосексных пород и линий птицы.

Наследственная потенция - способность животного передавать свои наследственные свойства потомству. В конце XIX и начале XX вв. теория наследственной потенции была одной из господствующих теорий животноводства. На смену ей пришел менделизм. Наследственная потенция обусловлена гомозиготностью животных. В настоящее время этот термин заменен термином "племенная ценность животного".

Наследственное предрасположение к болезням - ряд наследственных болезней, возникающих на основе сочетания генетических и внешних факторов. Примерами таких болезней могут служить лейкоз, другие инфекционные болезни и многие нарушения физиологических функций. В настоящее время разрабатываются и внедряются генетические основы селекции на устойчивость к болезням.

Наследственность - свойство организмов повторять в ряду поколений одинаковые признаки и передавать наследственные задатки, детерминирующие эти признаки. Наследственность может быть ядерной и неядерной (цитоплазматической). Она обеспечивается идентичным воспроизведением (ауторепродукцией) ДНК - носителя наследственности.

Наследственность цитоплазматическая (внеядерная, нехромосомная, плазматическая) - способ передачи наследственной информации, связанный с локализованными в плазмоне наследственными структурными элементами (плазмогенами). Для ее установления необходимо провести реципрокные скрещивания, так как закономерности этой категории наследственности отличаются от ядерной наследственности.

Наследственные дефекты - морфофизиологические дефекты, вызываемые сублетальными, полулетальными и летальными аллелями. Поражаются наследственными дефектами и гибнут большей частью те животные, у которых эти аллели встречаются в гомозиготном состоянии. В настоящее время у крупного рогатого скота выявлено 46 наследственных дефектов, у лошадей - 10, у свиней - 18, у овец - 15 и у кур - 45.

Наследуемость - доля генетической изменчивости в общей фенотипической вариации признака в конкретной популяции. Наследуемость соответствует регрессии генотипа на фенотип, вследствие чего она является критерием надежности фенотипа для оценки племенной ценности животных. Она позволяет также прогнозировать эффект масовой селекции. Наследуемость подразделяют на аддитивную, когда в доле генетической изменчивости превалирует аддитивный эффект генов, и неаддитивную, в которой главную роль играют доминирование и эпистаз.

Неаддитивный эффект генов - генетически обусловленный эффект в фенотипическом выражении признака, основанный на взаимодействии аллелей внутри локуса (доминирование) и между локусами (эпистаз). Является основной причиной возникновения гетерозиса и используется в разведении животных, в скрещиваниях пород и линий для получения гетерозисных гибридов и выявления специфической комбинационной способности.

Неполная доминантность - форма доминантности, при которой гетерозиготы по фенотипу промежуточны между доминантными и рецессивными гомозиготами. При неполной доминантности скрещивание гетерозигот ведет к выщеплению гомозигот, что тормозит селекционный процесс при выведении новых линий или пород.

Неполное проявление генов - действие генов на признак, которое обнаруживается только при определенных условиях среды или в зависимости от наличия или отсутствия других генов.

Нерасхождение хромосом - неправильное распределение конъюгировавших хромосом в анафазе мейо- за, во время которой гомологичные хромосомы отходят к одному и тому же полюсу. В результате нерасхождения гомологичных хромосохм в мейозе, когда одна гамета пвлучает не одну, а обе половые хромосомы одной из пар, возникают так называемые трисомики по X-хромосоме, т. е. зиготы с тремя X-хромосомами.

Нехватка - потеря концевого небольшого участка хромосомы или хроматиды. Нехватки могут быть гомо- и гетерозиготными. Животные с гомозиготными нехватками, как правило, нежизнеспособны. Однако и животные с гетерозиготными нехватками, исключая очень мелких нехваток, часто летальны. Нехватка обусловлена выпадением функции определенных генов, количественными изменениями ДНК и сдвигами генного баланса, что и приводит к летальности ее носителя.

Норма реакции - наследственно обусловленные границы, внутри которых среда определяет фенотипическое выражение признака животного, т. е. это специфический способ реагирования животных на изменение условий среды, зависящий от природы генотипа. В селекции постоянно возникает потребность устанавливать нормы реакции разных пород, линий и групп животных на воздействие среды - кормления, разной технологии содержания и т. д.

Нормированное отклонение - способ определения возможных случайных отклонений от теоретически ожидаемого числового соотношения классов в потомстве. Оно выражается в долях среднего квадратического отклонения и обозначается буквой.

Нуклеотид - сложная молекула, представляющая собой звено цепи нуклеиновой кислоты и состоящая из азотистого основания (аденин, гуанин, цитозин или тимин для ДНК; аденин, тимин, гуанин или урацил для РНК), связанного с сахаром (рибоза для РНК, дезоксирибоза для ДНК), который, в свою очередь, соединен с молекулой фосфорной кислоты.

Половое размножение свойственно всем живым организмам за исключением тех, которые вторично утратили половой процесс. Определение и развитие пола — сложный процесс, который детерминирован генетически, т.е. находится под контролем генов, а также подвержен влиянию внешней среды.


В животном мире господствует раздельнополость, т.е. существуют два типа ясно различающихся в половом отношении организмов — самцы и самки. Различия между ними очень глубокие и затрагивают не только органы, непосредственно участвующие в половом размножении. Половые различия сопровождаются заметными различиями в росте, обмене веществ, инстинктах, а также в тех признаках, которые подвержены воздействию половых желез, например, гребни, рога, волосы, оперение.

Гермафродитизм у животных в норме встречается только у немногих видов, например у червей.

У растений, наоборот, преобладает гермафродитность . Половые различия у растений выражены менее резко, чем у животных. Для растений характерны переходы от обоеполости к однополости, частые аномалии в развитии генеративных органов, изменение пола под влиянием внешних условий.

Определение пола у разных организмов может происходить на разных стадиях жизненного цикла.

Пол зиготы может предопределяться еще в процессе созревания женских гамет — яйцеклеток. Такое определение пола называется прогамным , т.е. оно происходит до оплодотворения. Прогамное определение пола обнаружено у коловраток и кольчатых червей. Яйцеклетки этих животных в результате неравномерного распределения цитоплазмы в процессе оогенеза различаются по размеру. Из крупных яйцеклеток после определения развиваются только самки, из мелких — только самцы.

Наиболее распространенным типом определения пола является сингамное , т.е. определение пола в момент слияния женских и мужских гамет. Оно встречается у млекопитающих, птиц, рыб и др.

Известен также третий тип определения пола — эпигамное , которое происходит на ранних стадиях индивидуального развития особи (например, у морского червя Bonelia viridis).

У большинства животных и раздельнополых растений основную роль в определении пола играют половые хромосомы . Еще в начале ХХ в. (1902 г., McClung) было установлено, что у некоторых насекомых (клоп Protenor) самцы образуют два типа сперматозоидов: один тип — с лишней хромосомой, второй — без нее. У самцов клопа Protenor в одних сперматозоидах было 7 хромосом, в других — 6. Непарную хромосому назвали половой хромосомой, в отличие от остальных — аутосом . В соматических клетках самца содержится 13 хромосом, одна из которых Х-хромосома (12A+X), в соматических клетках самки — 14 хромосом (12A+XX). Женский пол клопа является гомогаметным, так как образует гаметы одного типа (6A+X), а мужской — гетерогаметным и образует два типа гамет (6A+X) и (6А+0). Такой тип определения пола, при котором самки имеют кариотип ХХ , а самцы — Х0 , назван Protenor-типом. Он описан у большинства прямокрылых насекомых, жуков, пауков, многоножек и нематод.

Вслед за Protenor-типом был открыт другой тип определения пола, который характерен для млекопитающих, многих рыб, амфибий и ряда растений. Впервые он был описан у клопа Lygaeus turcicus и получил название Lygaeus-типа. При этом типе определения пола имеются два вида половых хромосом: Х и Y . Самки имеют две хромосомы, а самцы одну Х-хромосому и непарную ей Y-хромосому. Обозначение половых хромосом буквами X и Y отражает их форму, которую они имеют в профазе мейоза в результате отталкивания хроматид, соединенных только в области первичной перетяжки.

Женский пол при типе Lygaeus является гомогаметным, мужской — гетерогаметным.

У птиц, некоторых видов бабочек и рыб тип определения пола — обратный Lygaeus, т.е. гомогаметным является мужской пол. В этом случае для обозначения половых хромосом используют другие буквы: ♀ZW, ♂ZZ.

У моли описан тип — обратный Protenor, т.е. ♀Х0, ♂ХХ.

Особый тип определения пола характерен для пчел. Здесь разница между полами затрагивает не одну пару хромосом, а весь набор. Самки пчел — диплоидны, а самцы — гаплоидны, так как женские особи развиваются из оплодотворенных яйцеклеток, мужские особи — в результате партеногенеза.

Хромосомный механизм определения пола у растений был впервые определен у печеночного мха — Sphaerocarpus в ходе тетрадного анализа. Из четырех спор, образующихся в результате мейотического деления материнской клетки, две дают начало женским растениям, а две другие — мужским. Поскольку хромосомы мха Х и Y морфологически легко различимы, было установлено, что женские растения имеют кариотип 7А + Х, а мужские — 7А + Y. Диплоидный спорофит, который образуется в результате оплодотворения, имеет кариотип 14А + XY.

Гетероморфные пары хромосом обнаружены у мужских растений дремы, конопли, щавеля, хмеля и др. Определение пола у них соответствует типу Lygaeus. У земляники гетерогаметным (XY ) является женский пол, мужской — гомогаметным.

Половые хромосомы отличаются от аутосом поведением в профазе мейоза. Во время гаметогенеза они находятся в сильно спирализованном состоянии и редко объединяются в биваленты. Тем не менее они обладают сегментной гомологией и проявляют тенденцию к частичной коньюгации.

X и Y -хромосомы различаются по форме, величине и генному составу. Х-хромосома чаще всего относится к разряду крупных хромосом с большим генетическим объемом. У дрозофилы Х-хромосома — самая крупная в наборе. У человека Х-хромосома относится к разряду средних метацентриков, с нарушением ее структуры связан ряд тяжелых наследственных патологий (синдромов). Мужскую половую хромосому характеризует обедненность генами и, соответственно, низкая генетическая активность, а иногда и полная инертность. У человека с помощью молекулярно-генетических методов в Y-хромосоме выявлено около 40 генов. Однако реальных генетических функций еще меньше. В частности, в Y-хромосоме лежит мутация, отвечающая за малоприятный для мужчин признак — волосатость ушей. У дрозофилы Y-хромосома практически не оказывает никакого влияния на развитие пола.

У растений Y-хромосома также ведет себя по-разному: у одних она играет активную роль в определении пола, у других — является инертной. Например, Y-хромосома Milandrium alba (дрема) имеет сегменты, потеря которых ведет к нарушению нормального процесса развития пола и, как следствие, к мужской или женской стерильности. У Rumex acetosa Y-хромосома генетически инертна. У некоторых растений активность Y-хромосомы настолько высока, что особи YY оказываются жизнеспособными, как у аспарагуса, в то время как у других видов подобные особи не выживают.

Если гены, детерминирующие признаки, находятся в половых хромосомах, то их наследование не подчиняется законам Менделя. Распределение этих признаков соответствует распределению половых хромосом в процессе мейоза. Поскольку большинство генов, локализованных в Х-хромосоме, не имеют своих аллелей в Y-хромосоме, то у гетерогаметного пола (XY) в фенотипе проявляются все рецессивные гены, содержащиеся в их единственной Х-хромосоме. Гены, если они имеются в Y-хромосоме, проявляются также только у гетерогаметного пола.

Наследование признаков, определяемых генами, локализованными в Х и Y-хромосомах, называют сцепленным с полом. Впервые оно было описано Т. Морганом и его коллегами на примере рецессивного признака “white” — белые глаза.

Как видно из схемы, результаты прямого и обратного скрещиваний в случае наличия сцепления с полом разные. В прямом скрещивании гомозиготная красноглазая самка передает доминантный ген W и дочерям и сыновьям, благодаря чему все гибриды F 1 имеют красные глаза. Скрещивание гетерозиготных самок F 1 с самцами F 1 дает в F 2 только красноглазых самок, одна половина которых является гомозиготными, а другая — гетерозиготными. Среди самцов F 2 наблюдается расщепление на красноглазых и белоглазых в соотношении 1: 1, которое обусловлено гетерозиготностью самок F 1 , так как свою единственную Х-хромосому сыновья наследуют от матери. Общая формула расщепления по окраске глаз в F 2 (без учета пола) — 3: 1. На наличие сцепления признака с полом указывает то, что белая окраска глаз в F 2 проявляется только у самцов.

В обратном скрещивании рецессивная гомозиготная белоглазая самка передает ген w вместе с Х-хромосомой и дочерям и сыновьям F 1 , но проявляется он только у самцов. У самок F 1 этот ген подавляется доминантным аллельным геном, полученным от отца, и поэтому глаза у них красные. Таким образом, признак передается от отца к дочерям, а от матери к сыновьям. Такое наследование называется крисс-кросс (крест-накрест). Скрещивание самок и самцов F 1 дает мух двух фенотипических классов (красноглазых и белоглазых) в соотношении 1: 1, которое полностью соответствует распределению половых хромосом.

Описанный тип наследования окраски глаз у дрозофилы является закономерным для всех организмов в отношении признаков, которые определяются генами, локализованными в Х-хромосоме.

Сцепленное с полом наследование используется для ранней диагностики пола у животных, что важно для сельскохозяйственного производства. В птицеводстве важно определять пол “суточных” цыплят, чтобы ставить петушков и курочек на разный рацион, откармливая петушков на мясо. Для диагностики пола используется крисс-кросс наследование признака окраски пера. При скрещивании пестрой курицы (признак доминантный) с черным петухом (признак рецессивный) в F 1 все петушки, получившие доминантный ген от матери, будут пестрыми, а курочки — черными.

У человека сцепленно с полом наследуются такие наследственные аномалии, как гемофилия и дальтонизм. Поскольку у человека гетерогаметным является мужской пол, то эти аномалии проявляются, в основном, у мужчин. Женщины обычно являются носительницами таких генов, имея их в гетерозиготном состоянии.

При разведении тутового шелкопряда крисс-кросс наследование используется для отбора самцов по окраске грены (признак сцеплен с полом), так как выход шелка из коконов тутового шелкопряда мужского пола на 20-30% выше.

Картина сцепленного с полом наследования может искажаться, если наблюдаются отдельные случаи нерасхождения половых хромосом в процессе мейоза. Так, при скрещивании белоглазой самки дрозофилы с красноглазым самцом (см. выше схему наследования крисс-кросс) в F 1 , помимо красноглазых самок и белоглазых самцов, появляются единичные белоглазые самки и красноглазые самцы. Причиной этого отклонения является нерасхождение Х-хромосом у исходной самки. В процессе гаметогенеза в яйцеклетку попадает не одна Х-хромосома, а обе, или же, наоборот, ни одной, а обе попадают в полярное тельце. При оплодотворении таких яйцеклеток нормальными сперматозоидами и развиваются красноглазые самцы и белоглазые самки.

Потомство, которое образуется в результате первичного нерасхождения хромосом у самки, имеет разные, не соответствующие норме сочетания и количество половых хромосом. Однако, генетическая инертность Y-хромосомы делает особей с кариотипом ХХY женскими и жизнеспособными, а с кариотипом Х0 — мужскими и также жизнеспособными. Зиготы, не получившие Х-хромосомы (Y0 ), погибают, так же как (за редким исключением) и зиготы с тремя Х-хромосомами.

Схема наследования белой окраски глаз у дрозофилы (ген white)
при нерасхождении X-хромосом у самки

У дрозофилы выведена линия (double yellow — двойная желтая), у которой из поколения в поколение нарушается наследование сцепленного с полом признака — желтая окраска тела. У самок этой линии Х-хромосомы соединены друг с другом в проксимальной части и имеют одну центромеру. В связи с этим в мейозе они ведут себя как одна хромосома и в анафазе отходят к одному полюсу.

Гетерогаметность одного пола определяет соответствие соотношения полов в каждом поколении организмов формуле 1: 1. Это соотношение совпадает с расщеплением при анализирующем скрещивании. Рассмотрим его на примере дрозофилы, у которой определение пола соответствует Lygaeus-типу. Набор хромосом у дрозофилы состоит из трех пар аутосом и двух половых хромосом. Самка образует один тип гамет с гаплоидным набором (3A+X), а самец в равных количествах два типа гамет (3A+X) и (3A+Y). В итоге в следующем поколении развивается одинаковое количество самок и самцов.

Такое наследование наблюдается при разных типах хромосомного механизма определения пола, и вероятность рождения потомков мужского и женского пола в норме одинакова. Однако баланс полов может быть нарушен, если в половых хромосомах возникают летальные мутации. Рассмотрим случай, когда рецессивная летальная мутация (l ) возникла в одной из двух Х-хромосом самки дрозофилы (X Bl ), маркированной доминантной мутацией Bar (В ) — полосковидные глаза. Рассмотрите схему скрещивания такой самки с нормальным самцом дикого типа (+), имеющим круглые глаза.

Как видно из схемы, появление рецессивной летальной мутации в одной из Х-хромосом самки приводит к гибели половины мужского потомства. Об этом судят по отсутствию самцов с полосковидными глазами, получившими от матери Х-хромосому с летальным геном (X Bl ).

Гены, определяющие признаки пола, имеются не только в половых хромосомах, но и в аутосомах. С другой стороны, признаки, которые наследуются сцепленно с полом, часто не имеют прямого отношения к полу. Существует особая категория признаков, которые проявляются только у одного пола. Это — ограниченные полом признаки . Определяющие их гены имеются у обоих полов и могут находиться как в половых хромосомах, так и аутосомах. Однако работают эти гены, т.е. проявляют свое действие на уровне фенотипа, только у одного пола. К числу таких признаков относятся, например, молочность и жирность молока у коров, яйценоскость и размер яиц у кур. Эти признаки, которыми обладают особи женского пола, могут целиком определяться генотипом отца. Такое явление широко используется в селекции животных при использовании отцовских особей-производителей для получения высококачественного потомства.

Гены, определяющие развитие вторичных половых признаков, имеются как у мужчин, так и у женщин, но их проявление контролируется гормонами.

Пол может оказывать влияние на характер проявления признака, т.е. на его доминантность или рецессивность. В этом случае признаки называют зависимыми от пола . Так, например, у овец ген, определяющий развитие рогов, является доминантным у самцов и рецессивным — у самок. В связи с этим гетерозиготные самки являются комолыми, а гетерозиготные самцы — рогатыми. У человека точно так же наследуется признак плешивости. Зависимые от пола признаки находятся под сильным влиянием половых гормонов, соотношение которых может либо усилить, либо ослабить экспрессию гена.

Итак, подведем итог, касающийся механизма определения пола. Пол, как любой другой признак организма, детерминирован генетически. В определении пола у большинства животных и растений основная роль принадлежит половым хромосомам. Расщепление по полу соответствует соотношению 1: 1, что обусловлено равновероятным образованием двух типов гамет (1/2 с Х и 1/2 с Y хр.) у гетерогаметного пола (XY ). Гетерогаметным может быть как мужской, так и женский пол.

Определение пола — это начальный этап становления пола, за которым следует процесс его дифференциации, приводящий к развитию двух разных половых типов — женского и мужского. У животных половая дифференциация затрагивает всю организацию особи: строение органов размножения, внешнюю морфологию, обмен веществ, поведение, гормональный баланс, продолжительность жизни и пр. Половые различия которые обеспечивают комбинативную изменчивость внутри вида, а также его изоляцию, являются адаптивным механизмом.

Различают первичные и вторичные половые признаки. Первые непосредственно обеспечивают осуществление полового процесса. В частности, к ним относятся различия в строении внешних и внутренних половых органов женских и мужских особей. Развитие вторичных половых признаков является результатом нормального функционирования гонад (т.е. опосредовано первичными половыми признаками) и способствует половому размножению. Регулируется развитие вторичных половых признаков с помощью половых гормонов.

На процесс дифференциации пола оказывают влияние как генотипические факторы, так и внешняя среда.

Еще в начале ХХ в. было высказано предположение, что зигота является потенциально бисексуальной, но существуют механизмы, осуществляющие дифференциацию пола. Одним из таких механизмов является баланс половых хромосом и аутосом, при нарушении которого развитие пола отклоняется либо в сторону женского, либо в сторону мужского пола. Необходимость такого баланса впервые была установлена в опытах К. Бриджеса (лаборатория Т. Моргана), который обнаружил линию дрозофилы, дающую наряду с нормальными самцами и самками большой процент интерсексов. Интерсексы представляют собой смесь первичных и вторичных мужских и женских половых признаков, образуя все переходные типы: от сходных в основном с самцами до сходных с самками. Все они стерильны. В опыте Бриджеса они возникли в потомстве триплоидных самок, оплодотворенных нормальными диплоидными самцами, и содержали три набора аутосом и нормальное количество половых хромосом: 2Х+3А. Наряду с типичными интерсексами, в потомстве были представлены особи с гипертрофированными признаками женского пола — суперсамки (3Х+2А), и мужского пола — суперсамцы (XY+3X).

На основании этих результатов Бриджес пришел к выводу, что не само присутствие двух половых хромосом (XX или XY) определяет развитие пола, а баланс половых хромосом и гаплоидных наборов аутосом. Поскольку у дрозофилы Y-хромосома генетически инертна, то важно только количество Х-хромосом. Все особи с отношением 2Х: 2А = 1 являются самками, особи с отношением 1Х: 2А = 0,5 — самцами, типы с промежуточными между 1 и 0,5 отношениями являются интерсексами, а отношения больше 1 дают суперсамок, меньше 0,5 — суперсамцов.

Аномальное развитие пола при изменении числа наборов аутосом обусловлено нарушением баланса генов, которые участвуют в развитии пола. Поскольку гены проявляют свое действие в конкретных условиях, то на их функционирование оказывают влияние внешние факторы. Так, потомство триплоидных самок дрозофилы воспитывалось в условиях высокой и низкой температур. В обоих случаях развивались интерсексы, но при высокой температуре преимущественно с признаками самки, а при пониженной — с признаками самца. Таким образом, окончательное развитие пола является результатом сложных взаимодействий генов, локализованных как в половых хромосомах, так и в аутосомах, друг с другом и с факторами окружающей среды.

Изначальная бисексуальность зигот подтверждается фактами переопределения пола в процессе индивидуального развития. Классический пример — морской червь Bonellia viridis. Свободноплавающие личинки этого червя развиваются в самок. Если же личинка остается прикрепленной к материнской особи, из нее развивается самец. Будучи отделена от самки, такая личинка, начавшая развиваться в самца, изменяет направление дифференциации пола в женскую сторону и из нее развивается интерсекс. В хоботке самки имеются химические регуляторы, способные переопределять пол личинок.

Большой интерес представляет экспериментальное переопределение пола. Путем воздействия гормональными препаратами у ряда животных удается получить полное превращение пола вплоть до способности формировать половые клетки противоположного пола. Такое превращение известно у некоторых лягушек, рыб, птиц и других животных. Так, раннее удаление яичника у самок кур и голубей может изменить в мужскую сторону окраску оперения, поведение и даже вызвать развитие семенника. У крупного рогатого скота наблюдались случаи рождения разнополых двойнь, в которых бычок оказывался нормальным, а телка — стерильной, со многими чертами самцового типа. Такие двойни носят название “фримартинов”. Их появление обусловлено тем, что семенники мужского эмбриона рано начинают выделять мужской гормон, который попадает в кровь и оказывает влияние на близнеца.

Один из ярких примеров полного переопределения пола описан в 1953 г. японским ученым Т. Ямамото. Опыт проводился на белых и красных медаках (Oryzias latipes), у которых доминантный ген красной окраски находится в Y-хромосоме. При такой локализации гена при скрещивании самцы всегда будут красными, а самки — белыми. Фенотипических самцов кормили с добавлением в корм женского полового гормона. В результате оказалось, что все красные рыбки с генотипом самца являются самками с нормальными яичниками и женскими вторичными половыми признаками.

Переопределение пола может быть следствием мутаций отдельных генов, участвующих в дифференциации пола. Так, у дрозофилы в одной из аутосом обнаружен рецессивный ген tra , присутствие которого в гомозиготном состоянии обусловливает развитие женских зигот (XX) в фенотипических самцов, оказывающихся стерильными. Самцы XY, гомозиготные по этому гену, являются плодовитыми.

Аналогичные гены найдены у растений. Так, у кукурузы рецессивная мутация silkless в гомозиготном состоянии вызывает стерильность семяпочек, в связи с чем обоеполое растение функционирует как мужское. У сорго обнаружены два доминантных гена, комплементарное взаимодействие которых также вызывает женскую стерильность.

У наездника Habrobracon пол определяется по тому же типу, что и у пчел: диплоидные самки развиваются из оплодотворенных яиц, а гаплоидные самцы партеногенетически. Но иногда самцы могут развиваться из оплодотворенных яиц. Причина такой ситуации лежит в действии специфического гена, в гомозиготном состоянии определяющего развитие зиготы по мужскому типу.

Правильность хромосомной теории определения пола подтверждается существованием половых мозаиков, или гинандроморфов , совмещающих в себе части тела мужского и женского полов. Известны разные типы гинандроморфов: латеральные, переднезадние, мозаичные.


Билатеральный гинандроморф
Drosophila melanogaster

Латеральный гинандроморфизм описан у насекомых, у кур, у певчих птиц. В этом случае одна половина тела соответствует женскому типу, вторая — мужскому. При мозаичном гинандроморфизме большая часть тела имеет признаки одного пола, и лишь отдельные участки — признаки противоположного пола. Этот тип описан, в частности, у дрозофилы. Чаще всего причиной появления гинандроморфов является утрата одной из двух Х-хромосом в раннем дроблении зиготы с кариотипом самки (ХХ). Клетки с кариотипом Х0 обнаруживают признаки мужского пола. Чем раньше произойдет элиминация Х-хромосомы, тем больше участков мужского типа будет представлено в теле взрослой мухи. Обнаруживаются такие мозаики по проявлению рецессивных генов, которые в зиготе находились в гетерозиготном состоянии, но проявились фенотипически в клетках с кариотипом Х0.

Еще одной причиной гинандроморфизма может быть развитие зародыша из яйцеклетки с двумя ядрами (дизиготический гинандроморфизм). В этом случае мозаики могут быть соматическими, если оба ядра имеют один и тот же набор половых хромосом, но разный генотип (например, одно ядро Аа, а другое — аа), или половыми, если одно ядро ХХ, а другое ХY, или теми и другими одновременно. Подобный тип гинандроморфизма описан у шелковичного червя, бабочки, дрозофилы.

Известен также гинандроморфизм, причиной которого является полиспермия. Он обнаружен у дрозофилы. В яйцеклетке дрозофилы могут сформироваться два женских гаплоидных пронуклеуса, с одной Х-хромосомой каждый. При проникновении в яйцеклетку двух сперматозоидов один пронуклеус может оплодотвориться сперматозоидом с Х-хромосомой, а другой — сперматозоидом с Y-хромосомой. После первого дробления образуются два бластомера, один с кариотипом ХХ, другой — ХY, что в дальнейшем приведет к развитию гинандроморфа.

Сцепленные с полом и у людей: аномалия зрения, дальтонизм у мужчин чаще. (9%-мужчины; 0.5 – женщины). Ген дальтонизма рецессивный в Х хромосоме. Ген гемофилии локализован в Х хромосоме, женщина носитель, болеют только мужчины.

Признаки, сцепленных с полом могут служить метчиками, по которым в раннем возрасте можно производить разделение животных по полу.

У кур, ген оперения сцеплен с полом. Струнников, Тадзима в Японии проводили опыты на тутовом шелкопряде. Они разделяли яйца. Ген окраски грен сцеплен с полом: ♀-грены черные, ♂-грены светлые.

Выход шелка из кокона тутового шелкопряда на 20-30% продуктивнее у женской особи. Изучение наследования сцепленн.с полом признаков дало возможность сделать следующие выводы:

Пол наследуется как любой другой признак организма определяемый генами

Расщепление по полу 1:1 опред-ся образованием в мейозе 2-х сортов гамет с равной частотой у гетерогаметного пола.

Гетерогаметным полом может быть как мужская так и женская особь.

Наследование признаков, сцепленных с полом, опред-ся генами, локализованных в Х хромосоме. При этом наследование происходит крест-накрест.

Полное сцепление с полом выявляется лишь в том случае, если Y хромосома генетически инертна. Гены локализованы в Х хромосоме, имеющие аллели в Y хромосоме, наследуются частично сцепленно с полом.

Гены локализованы в Y хромосоме и не имеющие аллели в Х хромосоме, наследуются от отца к сыну.

Признаки пола могут быть наследованы не сцепленно с полом. Они определяются генами локализованным как в половых хромосомах, так и в аутосомах.

Наследование сцепленных с полом признаков явилось прямым доказательством локализации генов в хромосоме.

Конец работы -

Эта тема принадлежит разделу:

Ответы по генетике

Генетика как наука ее связь с другими науками.. генетика наука о наследственности и изменчивости живых организмов.. наследственность способность живых существ передавать свои признаки и способности потомству..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Мейоз и его генетическая сущность
Мейоз - способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Мейоз служит ключевым звеном гаметогенеза у животных и спорогенеза у растений, в результате которого

Хромосомная теория определения пола
В 1901 году при изучении хромосомных наборов половых клеток самцов и самок было установлено, что они различаются одной парой хромосом. Хромосомы этой пары были названы половыми, а остальные хромосо

Балансовая теория определения пола
Особи, имеющие комплекс хромосом 3Х+2А – сверх самки. Комплекс хромосом 2Х+3А – интерсекс. ж Комплекс хромосом XY+3А –сверх самцы ХХ:2А=1 (развиваются нормальные самки) X

Ложный и истинный гермафродитизм. Этапы формирования пола
Различают Гермафродитизм истинный (встречается редко; характерно наличие яичника и яичек) и ложный (половые органы и вторичные половые признаки не соответствуют характеру половых желёз). Истинный г

Закон линейного расположения генов
Т. Морган предположил, что гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними: чем чаще осуществляется кроссинговер, тем далее отстоят гены

Авторы и основные положения хромосомной теории наследственности
основные положения хромосомной теории наследственности(1911, Т.Морган) 1. основным материальным носителем наследственности являются хромосомы с локализованными в них генами 2. ген

Химический состав, строение и функции ДНК. Репликация ДНК
ДНК-полимер. Мономеры-нуклеотиды. 4 нуклеотида, каждый состоит из азотистого основания, сахара дезокси рибозы, остаток фосфорной кислоты. Азотистое основание – производное пурина: аденин и гуанин;

Химический состав, строение и функции РНК. Отличия ДНК от РНК
РНК состоит из сахара рибозы, фосфитов и азотистых оснований (А, Г, Ц, У). РНК живет максимум 3 минуты и разрушается. Отличие: -одноцепочечная и хим.активная -входит саха

Сущность и свойства генетического кода
Ген.код – система записи информации о последовательности расположения АК в белках с помощью послед-ти расположения нуклеотидов в и-РНК. Свойства генетического кода: -код триплетен

Мутационная изменчивость и ее роль в эволюции живых организмов
Мутационная изменчивость - изменения генов, это мутации, новые состояния генов. Они устойчивы, как и гены из которых они возникли, путем ауторепродукции и они передаются потомкам. Причины появления

Понятие о полиплоидии и гетероплоидии, причины возникновения и роль в эволюции
для получения нужных форм растений, отсутствующих в природе,наряду с гибридизацией огромное значение имела разработка методов искусственного получения мутаций. геномномную мутацию затрагивающую в

Как происходят генные мутации и каково их значение в селекции и эволюции
Генные мутации выражаются в изменении структуры отдельных участков ДНК. По своим последствиям генные мутации делятся на две группы: мутации без сдвига рамки считывания и мутации со сдвигом рамки сч

Инбридинг и его биологические особенности
инбридинг- подразумевают получение потомства от скрещивания родственных между собой особей. инбридинг-спаривание родственных самцов и самок. в результате этого инбридинг животных имеет меж

Использование инбридинга в животноводстве и растениеводстве
у овец породы прекос в результате инбридинга число абартирующих маток было в 2 раза больше чем при неродственном скрещивании. у крс отрицательное влияние на плодовитость,кач-во потомства, жизнесп

XII. Наследование признаков, сцепленных с полом

Наследование признаков, сцепленных с полом, у кошек

Черепаховые ("трехцветные") кошки имеют смешанную черную и рыжую окраску шерсти. Очень часто у них бывают и белые пятна, но они наследуются независимо от черепаховой окраски, так как определяются другим геном. Трехцветные кошки без белых пятен имеют рыжие полосы или пятна на черном фоне. Все они самки, и в их потомстве одна половина котят мужского пола имеет черную окраску, а другая - рыжую; половина котят женского пола всегда трехцветные, другая половина (в зависимости от окраски отца) - черные или рыжие.

Как объясняется этот необычный тип наследования? Вы, наверное, уже догадались, что это как-то связано с половыми хромосомами. И, действительно, подобный способ передачи признаков называется наследованием, сцепленным с полом.

Гены, сцепленные с полом, находятся в Х-хромосоме. Они отличаются от генов аутосом тем, что у организмов гетерогаметного пола (XY) они не имеют партнеров; Y-xpoмосома вообще несет очень мало генов. Организмы гетерогаметного пола не могут поэтому быть гетерозиготными по генам, сцепленным с полом.

Черная и рыжая окраска кошек обусловлена аллелями сцепленного с полом гена. Ни один из них не доминирует над другим, и поэтому в гетерозиготе проявляется и черная, и рыжая окраска, т. е. кошка оказывается трехцветной. Этим объясняется, что все трехцветные кошки являются самками. Поскольку у млекопитающих самец имеет Х- и Y-хромосомы, он не может быть гетерозиготным по черной и рыжей окраске.

В записанных в табл. 11 генотипах аллели, определяющие черную и рыжую окраску, обозначены буквами В и b. Y-хромосома не несет аллелей этого гена, поэтому самец имеет только один аллель.

Рис. 27 иллюстрирует наследование черной и рыжей окраски у кошек. Он показывает картину наследования любого гена, сцепленного с полом, в тех случаях, когда мужской пол является гетерогаметным (XY). Правила передачи по наследству гена, сцепленного с полом, такие же, как и правила передачи всей Х-хромосомы. Вы уже, очевидно, сформулировали эти правила после выполнения заданий к главе XI. Самые важные из них:

1. Все котята мужского пола наследуют ген черной или рыжей окраски от матери и никогда не наследуют его от отца.

Самец наследует все гены, сцепленные с полом, от матери.

2. Котята женского пола наследуют ген черной или рыжей окраски от матери, а партнерный ген - от отца.

Самка наследует один ген, сцепленный с полом, от матери, а партнерный ген - от отца.

3. Кот передает ген рыжей и черной окраски своим дочерям и никогда не передает его сыновьям.

Самец передает гены, сцепленные с полом, дочерям.

4. Кошка (♀) передает гены рыжей или черной окраски как сыновьям, так и дочерям.

Самка передает гены, сцепленные с полом, как сыновьям, так и дочерям.

Наследование признаков, сцепленных с полом, у человека

Хорошо известен и довольно широко распространен у человека ген, сцепленный с полом, который вызывает так называемую цветовую слепоту (дальтонизм). Дальтоники не отличают красный цвет от зеленого, хотя они сами узнают об этом нередко лишь после специальных обследований. Красный и зеленый свет или окрашенные предметы обычно отличаются не только по цвету, но и по яркости; так, например, водитель, страдающий дальтонизмом, тем не менее различает сигналы светофора.

Ген, вызывающий дальтонизм (сb), рецессивен по отношению к своему нормальному аллелю. В табл. 12 записаны возможные генотипы и соответствующие им фенотипы.

Отсюда следует, что среди представителей каждого пола встречаются только два различных фенотипа: люди с нормальным зрением и дальтоники (ср. с табл. 11). Понятно, что это обусловлено рецессивностью гена cb.

На основании табл. 12 можно сформулировать несколько важных правил наследования рецессивного признака, сцепленного с полом.

1. Все мужчины с нормальным фенотипом имеют одинаковые генотипы, т. е. несут нормальный аллель в своей единственной Х-хромосоме.

2. Женщины с нормальным фенотипом могут иметь два различных генотипа: одни гомозиготны по нормальному аллелю, другие - гетерозиготны.

3. Из первых двух правил вытекает третье. Мужчина с нормальным фенотипом не может передавать по наследству рецессивную аномалию, сцепленную с полом, в отличие от женщины, тоже имеющей нормальный фенотип.

Знание этой закономерности не столь важно при таких несерьезных дефектах, как дальтонизм, но очень существенно при тяжелых заболеваниях, обусловленных генами, сцепленными с полом, например при гемофилии (несвертывание крови).

У людей, страдающих гемофилией, отсутствует компонент крови, необходимый для ее быстрого свертывания при ранении. Такие люди теряют необычно большое количество крови даже при легких ранениях, и операции, безвредные для других (например, удаление зуба), для них могут представлять опасность Здоровые мужчины, в роду которых передается сцепленный с полом ген, вызывающий гемофилию, могут быть уверены, что они не несут этот ген, в то время как у здоровых женщин не может быть такой уверенности. Было бы очень важно уметь выявлять ген, вызывающий гемофилию, у здоровых женщин путем исследования крови, подобно тому как выявляется ген анемии. В настоящее время делаются попытки разработать такую методику.

4. У женщин дальтонизм проявляется, если она получила два соответствующих гена, а мужчине достаточно одного такого гена. Этим и объясняется то, что среди мужчин дальтоники встречаются чаще, чем среди женщин.

В качестве примера наследования, сцепленного с полом, рассмотрим два брака: менаду гетерозиготной женщиной, несущей ген дальтонизма, либо с нормальным мужчиной, либо с мужчиной-дальтоником. Эти браки можно записать так:

Данные примеры точно соответствуют скрещиваниям трехцветной кошки, с которыми мы познакомились, рассматривая рис. 27. Если на этом рисунке заменить ген рыжей окраски геном человека cb, а ген черной окраски - нормальным аллелем + гена сb, то, имея в виду, что ген + полностью доминирует над геном cb, можно установить, какие будут дети от этих браков:


Таким образом, именно генотип матери, и только матери определяет генотип сыновей по генам, сцепленным с полом, тогда как генотип дочерей зависит от обоих родителей.

Теперь рассмотрим историю рода, в котором передается ген, вызывающий гемофилию (рис. 28). Обозначим этот ген буквой h, а его нормальный аллель - знаком +.

Мужчина, страдающий гемофилией (поколение I), женился на здоровой женщине. У них было четверо детей - два мальчика и две девочки. О женщине известно, что она происходит из рода, в котором в течение нескольких поколений не было случаев заболевания гемофилией, поэтому можно считать, что она не несет этого гена. Следовательно, в поколении I муж имел генотип h, а жена - генотип ++. Оба сына (поколение II), естественно, получили Y-хромосому от отца и Х-хромосому от матери, поэтому каждый из них имел генотип +. Фактически ген h исчез, и, следовательно, среди потомков этих двух братьев (если никто из них не вступит в брак с гетерозиготной женщиной, несущей ген h) не будет случаев заболевания гемофилией. Две женщины поколения II получили от матери по одной нормальной Х-хромосоме, а от отца - по Х-хромосоме, несущей ген h. Сами женщины фенотипически здоровы, но они гетерозиготны по гену, вызывающему гемофилию. Обе они выходят замуж за здоровых мужчин. Каждая из них передает половине своих детей (как сыновьям, так и дочерям) нормальную Х-хромосому, а остальным детям - Х-хромосому, несущую ген h. Действительно, трое из ее пяти сыновей страдают гемофилией. Все четыре дочери здоровы, но некоторые из них могут нести ген h и, в свою очередь, передавать его детям.

Рассмотренная родословная представляет собой типичный случай наследования рецессивного признака, сцепленного с полом. Вот схема этого типа наследования. Пораженный мужчина имеет нормальную жену. Все его дети и внуки от сыновей оказываются нормальными. Среди его внуков от дочерей часть мальчиков страдает гемофилией, в то время как все девочки здоровы. Однако некоторые из них в дальнейшем могут иметь больных сыновей.

Итак, гемофилия - заболевание, которое передается здоровыми женщинами, но не передается здоровыми мужчинами, в то время как подвержены этому заболеванию только мужчины. Первая часть этого положения справедлива для всех случаев передачи по наследству рецессивных признаков, сцепленных с полом, вторая - только для таких редких и тяжелых заболеваний, как гемофилия, так как женщин, гомозиготных по гену, определяющему этот признак, практически не бывает. При других аномалиях (таких, как дальтонизм) в случае брака между пораженным мужчиной и гетерозиготной женщиной, несущей аномальный ген, могут рождаться пораженные дочери.

Наследование признаков, сцепленных с полом, у дрозофилы

Х-хромосома у дрозофилы очень крупная и несет много генов, сцепленных с полом. Один из них относится к серии множественных аллелей, определяющих оттенки цвета глаз от темно-красного у мух дикого типа до совершенно белого. Аллель, определяющий белый цвет глаз, является последним в этой серии, т. е. он рецессивен по отношению ко всем остальным аллелям. Аллель дикого типа - первый в этой серии; он доминирует над всеми остальными аллелями.

На рис. 29 показано реципрокное (обратное) скрещивание между красноглазыми и белоглазыми мухами. (Самцов и самок дрозофил можно различить по окраске и форме брюшка: у самки брюшко заостренное и опоясано черными и желтыми полосками, у самца брюшко тупое, с черным кончиком от слияния черных полосок.) На рис. 29, а изображены самец с белыми и самка с красными глазами, а на рис. 29, б - самец с красными и самка с белыми глазами. Ген, определяющий белый цвет глаз, обозначен буквой w, его нормальный аллель, определяющий красные глаза, - знаком +. Поскольку аллель w рецессивен по отношению к аллелю +, то красноглазые самки могут иметь или генотип ++, или генотип +w. Белоглазые самки всегда имеют генотип ww. Самцы могут иметь или генотип +, тогда они красноглазые, или генотип w, тогда они белоглазые.

На рис. 29, а показано скрещивание белоглазого самца с красноглазой самкой; в результате образуется только красноглазое потомство. Все самки F 1 гетерозиготны (+w) и будут иметь в потомстве белоглазых сыновей, независимо от генотипа самца. Это скрещивание соответствует браку между мужчиной, страдающим гемофилией, и здоровой женщиной (см. рис. 28).

На рис. 29, б изображено реципрокное скрещивание (красноглазого самца с белоглазой самкой), которое дает иные результаты F 1 состоит из белоглазых самцов и красноглазых (гетерозиготных) самок. Такое наследование, называемое наследованием крест-накрест, бывает при скрещивании самки, гомозиготной по рецессивному гену, сцепленному с иолом, с самцом, несущим доминантный аллель этого гена.

Различие в наследовании при реципрокных скрещиваниях характерно для признаков, сцепленных с полом. Такие различия полностью отсутствуют в случаях, если признаки определяются генами, находящимися в аутосомах. Вы, наверное, помните, что в скрещиваниях, проводимых Менделем, не имело значения, какое растение давало пыльцу, а какое - семяпочки.

Наследование признаков, сцепленных с полом, у птиц

У птиц, в отличие от млекопитающих, гетерогаметным является женский пол (XY). Поэтому все правила наследования признаков, сцепленных с полом, для самцов и самок млекопитающих у птиц, наоборот, относятся соответственно к самкам и самцам. Так, курица не может быть гетерозиготной по гену, сцепленному с полом Она наследует все гены, сцепленные с полом, от отца и передает их только своим сыновьям. Петух, наоборот, может быть гетерозиготным по генам, сцепленным с полом; он получает эти гены от обоих родителей и передает их как сыновьям, так и дочерям.

Для получения наследования крест-накрест у птиц самца, гомозиготного по рецессивному гену, сцепленному с полом, скрещивают с самкой, несущей доминантный аллель этого гена. Хорошим примером является скрещивание между петухом, имеющим сплошную окраску, и "полосатой" курицей (с белыми полосами). Ген, определяющий белые полосы, сцеплен с полом, он доминантен. Обозначив его буквой В, запишем это скрещивание:


Наследование крест-накрест признаков оперения используется на птицеводческих фермах, так как оно позволяет легко определять пол вылупившихся цыплят по их пуховому оперению.

Выводы

1. Гены, находящиеся в Х-хромосоме, называются сцепленными с полом. У них нет партнерных генов в Y-хромосоме.

2. Наследование признаков, сцепленных с полом, у видов (таких, как дрозофила и млекопитающие), мужской пол которых является гетерогаметным (XY), подчиняется следующим правилам.

Самцы не могут быть гетерозиготными по генам, сцепленным с полом. Любой ген, доминантный или рецессивный, всегда проявляет свое действие у самцов. В тех случаях, когда из поколения в поколение передается рецессивная аномалия, сцепленная с полом, нормальные самцы не несут этого гена и, естественно, не могут его передавать следующим поколениям.

Самки могут быть гомозиготными или гетерозиготными по генам, сцепленным с полом. При наследовании рецессивной аномалии, сцепленной с полом, фенотипически нормальные самки могут передавать аномальный ген своему потомству. Самец наследует гены, сцепленные с полом, от матери и передает их своим дочерям. Самка наследует гены, сцепленные с полом, от обоих родителей и передает их как сыновьям, так и дочерям.

У видов, подобных птицам, женский пол которых гетерогаметен, приведенные выше правила наследования для самцов справедливы для самок, и, наоборот, правила наследования для самок справедливы для самцов.

Задание

1. Каких детей можно ждать от брака: а) между нормальным мужчиной и женщиной, страдающей дальтонизмом; б) между мужчиной и женщиной, каждый из которых страдает дальтонизмом, и в) между мужчиной, страдающим дальтонизмом, и нормальной женщиной, отец которой был дальтоником?

2. У некоторых пород домашней птицы серебристое (белое) и золотистое (коричневое) оперение определяется парой генов, сцепленных с полом. Ген серебристого оперения (S) доминирует над геном золотистого оперения (s). Как нужно проводить скрещивание, чтобы можно было определять пол вылупившихся цыплят по их пуховому оперению?

В 1911 -1912 годах Т. Морган и сотрудники проверили проявление третьего закона Менделя на мухах-дрозофилах. Они учитывали две пары альтернативных признаков: серый (В) и черный (Ь) цвет тела и нормальные (V) и короткие (v) крылья. При скрещивании гомозиготных особей с серым цветом тела и нормальными крыльями с мухами с черным цветом тела и короткими крыльями получили единообразие гибридов первого поколения - мух с серым телом и нормальными крыльями. Подтвердился I закон Менделя.

Морган ожидал получить, согласно третьему закону Менделя, мух четырех разных фенотипов в равном количестве (по 25%), а получил двух фенотипов (по 50% каждого). Морган пришел к выводу, что поскольку у организмов генов много, а хромосом относительно мало, то, следовательно, в каждой хромосоме содержится большое количество генов, и гены, локализованные в одной хромосоме, передаются вместе (сцепленно). Цитологические основы этого явления можно пояснить следующей схемой (рис. 1). Одна из пары гомологичных хромосом содержит два доминантных гена (BV), а другая - два рецессивных (bv). При мейозе хромосома с генами BV попадет в одну гамету, а хромосома с генами bv в другую.

Рис. 1. Схема расхождения гомологичных хромосом в мейозе при полном сцеплении.

Таким образом, у дигетерозиготного организма образуются не четыре типа гамет (когда гены расположены в разных хромосомах), а только два, и, следовательно, потомки будут иметь два сочетания признаков (как у родителей).

Гены, локализованные в одной хромосоме, обычно передаются вместе и составляют одну группу сцепления. Так как в гомологичных хромосомах локализованы аллельные гены, то группу сцепления составляют две гомологичные хромосомы, и, следовательно, количество групп сцепления соответствует количеству пар хромосом (или гаплоидному числу хромосом). Так, у мухи-дрозофилы всего 8 хромосом - 4 труппы сцепления, у человека 46 хромосом - 23 группы сцепления.

Если гены, локализованные в одной хромосоме, передаются всегда вместе, то такое сцепление называется пол ным. Однако при дальнейшем анализе сцепления генов было обнаружено, что в некоторых случаях оно может нарушаться. Если дигетерозиготную самку мухи-дрозофилы скрестить с рецессивным самцом, результат будет следующий:

Морган предполагал получить опять мух четырех фенотипов по 25%, а получил потомков четырех фенотипов, но в другом соотношении: по 41,5% особей с серым телом и нормальными крыльями и с черным телом и короткими крыльями и по 8,5% мух с серым телом и короткими крыльями и с черным телом и нормальными крыльями. В этом случае сцепление ге нов неполное, т.е. гены, локализованные в одной хромосоме, не всегда передаются вместе. Это связано с явлением кроссинговера, которое заключается в обмене участками гомологичных хроматид в процессе их конъюгации в профазе мейоза I (рис. 2). Кроссинговер у гетерозиготных организмов приводит к перекомбинации генетического материала.

Рис. 2. Схема кроссинговера

Каждая из образовавшихся хроматид попадает в отдельную гамету. Образуются 4 типа гамет, но в отличие от свободного комбинирования их процентное соотношение будет неравным, так как кроссинговер происходит не всегда. Частота кроссииговера зависит от расстояния между генами: чем больше расстояние, тем чаще может происходить кроссинговер. Расстояние между генами определяется в процентах кроссииговера - 1 морганида равна 1 % кроссинговера.

Итак, свободное комбинирование генов, согласно третьему закону Менделя, происходит в том случае, когда исследуемые гены расположены в разных хромосомах. Неполное сцепление наблюдается тогда, когда происходит перекомбинация генов (кроссинговер), расположенных в одной хромосоме. Если гены расположены в одной хромосоме и кроссинговер не происходит, сцепление будет полным. Кроссинговер имеет место у всех растений и животных, за исключением самца мухи-дрозофилы и самки тутового шелкопряда.

Основные положения хромосомной теории наслед ственности:

Гены расположены в хромосомах линейно в определенных локусах (участках); аллельные гены занимают одинаковые локусы в гомологичных хромосомах;

Гены гомологичных хромосом образуют группу сцепления; число их равно гаплоидному набору хромосом;

Между гомологичными хромосомами возможен обмен аллельными генами (кроссинговер);

Расстояние между генами пропорционально проценту кроссииговера и выражается в морганидах.

Пол организма - это совокупность признаков и анатомических структур, обеспечивающих половой путь размножения и передачу наследственной информации.

В определении пола будущей особи ведущую роль играет хромосомный аппарат зиготы - кариотип. Различают хромосомы, одинаковые для обоих полов - аутосомы, и половые хромосомы.

В кариотипе человека содержится 44 аутосомы и 2 половых хромосомы - Х и Y. За развитие женского пола у человека отвечают две Х-хромосомы, т. е. женский пол гомогаметен. Развитие мужского пола определяется наличием Х- и Y-хромосом, т. е. мужской пол гетерогаметен. Сочетание половых хромосом в зиготе определяет пол будущего организма (рис. 3).

Рис. 3. Схема определения пола у человека. Половина сперматозоидов несет X -хромосому, а другая половина - Y -хромосому. Пол ребенка зависит от того, какой сперматозоид оплодотворит яйцеклетку

У всех млекопитающих, человека и мухи-дрозофилы, гомогаметным является женский пол, а гетерогаметным - мужской. У птиц и бабочек, наоборот, гомогаметен мужской пол, а женский - гетерогаметен.

Признаки, сцепленные с полом

Это признаки, которые кодируются генами, находящимися на половых хромосомах. У человека признаки, кодируемые генами Х-хромосомы, могут проявляться у представителей обоих полов, а кодируемые генами Y-хромосомы - только у мужчин.

Следует иметь в виду, что в мужском генотипе только одна Х-хромосома, которая почти не содержит участков, гомологичных с Y-хромосомой, поэтому все локализованные в Х-хромосоме гены, в том числе и рецессивные, проявляются в фенотипе в первом же поколении.

В половых хромосомах содержатся гены, регулирующие проявление не только половых признаков. Х-хромосома имеет гены, отвечающие за свертываемость крови, цветовое восприятие, синтез ряда ферментов. В Y-хромосоме содержится ряд генов, контролирующих признаки, наследуемые по мужской линии (голандрические признаки): волосистость ушной раковины, наличие кожной перепонки между пальцами и др. Известно очень мало генов, общих для Х- и Y-хромосом.

Различают Х-сцепленное и Y-сцепленное (голандрическое) наследование.

Х-сцепленное наследование

Так как Х-хромосома присутствует в кариотипе каждого человека, то и признаки, наследуемые сцеплено с Х-хромосомой, проявляются у представителей обоих полов. Женщины получают эти гены от обоих родителей и через свои гаметы передают их потомкам. Мужчины получают Х-хромосому от матери и передают ее своему потомству женского пола.

Различают Х-сцепленное доминантное и Х-сцепленное рецессивное наследование. У человека Х-сцепленный доминантный признак передается матерью всему потомству. Мужчина передает свой Х-сцепленный доминантный признак лишь своим дочерям. Х-сцепленный рецессивный признак у женщин проявляется лишь при получении ими соответствующего аллеля от обоих родителей. У мужчин он развивается при получении рецессивного аллеля от матери. Женщины передают рецессивный аллель потомкам обоих полов, а мужчины - только дочерям.

При Х-сцепленном наследовании возможен промежуточный характер проявления признака у гетерозигот.

Y-сцепленные гены присутствуют в генотипе только мужчин и передаются из поколения в поколение от отца к сыну.



Последние материалы раздела:

Сколько в одном метре километров Чему равен 1 км в метрах
Сколько в одном метре километров Чему равен 1 км в метрах

квадратный километр - — Тематики нефтегазовая промышленность EN square kilometersq.km … квадратный километр - мера площадей метрической системы...

Читы на GTA: San-Andreas для андроид
Читы на GTA: San-Andreas для андроид

Все коды на GTA San Andreas на Андроид, которые дадут вам бессмертность, бесконечные патроны, неуязвимость, выносливость, новые машины, парашют,...

Классическая механика Закон сохранения энергии
Классическая механика Закон сохранения энергии

Определение Механикой называется часть физики, изучающая движение и взаимодействие материальных тел. При этом механическое движение...