Формулы перемещения скорости ускорения. Равноускоренное движение: формулы, примеры

Как известно, движение в классической физике описывается вторым законом Ньютона. Благодаря этому закону вводится понятие ускорения тела. В данной статье рассмотрим основные в физике, которые используют понятия действующей силы, скорости и пройденного телом пути.

Понятие об ускорении через второй закон Ньютона

Если на некоторое физическое тело массой m действует внешняя сила F¯, то при отсутствии других воздействий на него, можно записать следующее равенство:

Здесь a¯ - получившая название линейного ускорения. Как видно из формулы, оно прямо пропорционально внешней силе F¯, поскольку массу тела можно считать величиной постоянной при скоростях намного меньших скорости распространения электромагнитных волн. Кроме того, вектор a¯ совпадает по направлению с F¯.

Приведенное выражение позволяет записать первую формулу ускорения в физике:

a¯ = F¯/m или a = F/m

Здесь второе выражение записано в скалярной форме.

Ускорение, скорость и пройденный путь

Еще один способ найти линейное ускорение a¯ заключается в исследовании процесса движения тела по прямой траектории. Такое движение принято описывать такими характеристиками, как скорость, время и пройденный путь. В этом случае ускорение понимается как скорость изменения самой скорости.

Для прямолинейного перемещения объектов справедливы следующие формулы в скалярной форме:

2) a cp = (v 2 -v 1)/(t 2 -t 1);

3) a cp = 2*S/t 2

Первое выражение представляет собой оно определяется как производная скорости по времени.

Вторая формула позволяет рассчитать среднее ускорение. Здесь рассматривается два состояния движущегося объекта: его скорость в момент v 1 времени t 1 и аналогичная величина v 2 в момент времени t 2 . Время t 1 и t 2 отсчитывается от некоторого начального события. Отметим, что среднее ускорение характеризует в общем эту величину на рассмотренном временном промежутке. Внутри же него значение мгновенного ускорения может изменяться и значительно отличаться от среднего a cp .

Третья формула ускорения в физике дает возможность определять также a cp , но уже через пройденный путь S. Формула справедлива, если тело начинало движения с нулевой скорости, то есть когда t=0, v 0 =0. Этот тип движения называют равноускоренным. Его ярким примером является падение тел в поле гравитации нашей планеты.

Движение по окружности равномерное и ускорение

Как было сказано, ускорение является вектором и по определению представляет собой изменение скорости за единицу времени. В случае равномерного движения по окружности модуль скорости не меняется, однако постоянно изменяет направление его вектор. Этот факт приводит к возникновению специфического вида ускорения, получившего название центростремительного. Оно направлено к центру окружности, по которой тело совершает движение, и определяется по формуле:

a c = v 2 /r, где r - радиус окружности.

Эта формула ускорения в физике демонстрирует, что его значение с ростом скорости растет быстрее, чем с уменьшением радиуса кривизны траектории.

Примером проявления a c является движение автомобиля, входящего в поворот.

Тела была постоянной и тело за любые равные промежутки времени проходило одинаковые пути.

Большинство движений, однако, нельзя считать равномерными. На одних участках тела могут иметь меньшую скорость, на других - большую. Например, поезд, отходящий от станции, начинает двигаться все быстрее и быстрее. Подъезжая к станции, он, наоборот, замедляет свое движение.

Проделаем опыт. Установим на тележку капельницу, из которой через одинаковые промежутки времени падают капли окрашенной жидкости. Поместим эту тележку на наклонную доску и отпустим. Мы увидим, что расстояние между следами, оставленными каплями, по мере движения тележки вниз будет становиться все больше и больше (рис. 3). Это означает, что за равные промежутки времени тележка проходит неодинаковые пути. Скорость тележки возрастает. Причем, как можно доказать, за одни и те же промежутки времени скорость тележки, съезжающей по наклонной доске, возрастает все время на одну и ту же величину.

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным .

Так. например, опытами установлено, что скорость любого свободно падающего тела (при отсутствии сопротивления воздуха) за каждую секунду возрастает примерно на 9,8 м/с, т.е. если вначале тело покоилось, то через секунду после начала падения оно будет иметь скорость 9,8 м/с, еще через секунду- 19,6 м/с, еще через секунду - 29,4 м/с и т.д.

Физическая величина, показывающая, на сколько изменяется скорость тела за каждую секунду равноускоренного движения, называется ускорением .
а - ускорение.

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с 2 и называют "метр на секунду в квадрате".

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 10 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 10 м/с, т. е. в 10 раз быстрее, чем при ускорении 1 м/с 2 .

Примеры ускорений, встречающихся в нашей жизни, можно найти в таблице 1.


Как рассчитывают ускорение, с которым тела начинают двигаться?

Пусть, например, известно, что скорость отъезжающего от станции электропоезда за 2 с увеличивается на 1,2 м/с Тогда, для того чтобы узнать, на сколько она возрастает за 1 с, надо 1,2 м/с разделить на 2 с. Мы получим 0,6 м/с2. Это и есть ускорение поезда.

Итак, чтобы найти ускорение тела, начинающего равноускоренное движение, надо приобретенную телом скорость разделить на время, за которое была достигнута эта скорость :

Обозначим все величины, входящие в это выражение, латинскими буквами:
а - ускорение; V - приобретенная скорость; t - время

Тогда формулу для определения ускорения можно записать в следующем виде:

Эта формула справедлива для равноускоренного движения из состояния покоя , т. е. когда начальная скорость тела равна нулю. Начальную скорость тела обозначаютV 0 - Формула (2.1), таким образом, справедлива лишь при условии, что V 0 = 0.

Если же нулю равна не начальная, а конечная скорость (которая обозначается просто буквой V ), то формула ускорения принимает вид:

В таком виде формулу ускорения применяют в тех случаях, когда тело, имеющее некоторую скорость V 0 , начинает двигаться все медленнее и медленнее, пока наконец не остановится (v = 0). Именно по этой формуле, например, мы будем рассчитывать ускорение при торможении автомобилей и других транспортных средств. Под временем t при этом мы будем понимать время торможения.

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. 4, а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. 4, б).


При равномерном прямолинейном движении скорость тела не изменяется. Поэтому ускорение при таком движении отсутствует (а = 0) и на рисунках изображено быть не может.

1. Какое движение называют равноускоренным? 2. Что такое ускорение? 3. Что характеризует ускорение? 4. В каких случаях ускорение равно нулю? 5. По какой формуле находится ускорение тела при равноускоренном движении из состояния покоя? 6. По какой формуле находится ускорение тела при уменьшении скорости движения до нуля? 7. Как направлено ускорение при равноускоренном прямолинейном движении?

Экспериментальное задание
. Используя линейку в качестве наклонной плоскости, положите на ее верхний край монету и отпустите. Будет ли двигаться монета? Если будет, то как - равномерно или равноускоренно? Как это зависит от угла наклона линейки?

С.В. Громов, Н.А. Родина, Физика 8 класс

Отослано читателями из интернет-сайтов

Задание и ответы с физики по классам, физика тесты ответы , планирование уроков физики 8 класс, наибольшая библиотека рефератов онлайн, домашние задание и работа

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Ускорение характеризует быстроту изменения скорости движущегося тела. Если скорость тела остается постоянной, то оно не ускоряется. Ускорение имеет место только в том случае, когда скорость тела меняется. Если скорость тела увеличивается или уменьшается на некоторую постоянную величину, то такое тело движется с постоянным ускорением. Ускорение измеряется в метрах в секунду за секунду (м/с 2) и вычисляется по значениям двух скоростей и времени или по значению силы, приложенной к телу.

Шаги

Вычисление среднего ускорения по двум скоростям

    Формула для вычисления среднего ускорения. Среднее ускорение тела вычисляется по его начальной и конечной скоростям (скорость – это быстрота передвижения в определенном направлении) и времени, которое необходимо телу для достижения конечной скорости. Формула для вычисления ускорения: a = Δv / Δt , где а – ускорение, Δv – изменение скорости, Δt – время, необходимое для достижения конечной скорости.

    Определение переменных. Вы можете вычислить Δv и Δt следующим образом: Δv = v к - v н и Δt = t к - t н , где v к – конечная скорость, v н – начальная скорость, t к – конечное время, t н – начальное время.

    • Так как ускорение имеет направление, всегда вычитайте начальную скорость из конечной скорости; в противно случае направление вычисленного ускорения будет неверным.
    • Если в задаче начальное время не дано, то подразумевается, что t н = 0.
  1. Найдите ускорение при помощи формулы. Для начала напишите формулу и данные вам переменные. Формула: . Вычтите начальную скорость из конечной скорости, а затем разделите результат на промежуток времени (изменение времени). Вы получите среднее ускорение за данный промежуток времени.

    • Если конечная скорость меньше начальной, то ускорение имеет отрицательное значение, то есть тело замедляется.
    • Пример 1: автомобиль разгоняется с 18,5 м/с до 46,1 м/с за 2,47 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (v к - v н)/(t к - t н)
      • Напишите переменные: v к = 46,1 м/с, v н = 18,5 м/с, t к = 2,47 с, t н = 0 с.
      • Вычисление: a = (46,1 - 18,5)/2,47 = 11,17 м/с 2 .
    • Пример 2: мотоцикл начинает торможение при скорости 22,4 м/с и останавливается через 2,55 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (v к - v н)/(t к - t н)
      • Напишите переменные: v к = 0 м/с, v н = 22,4 м/с, t к = 2,55 с, t н = 0 с.
      • Вычисление: а = (0 - 22,4)/2,55 = -8,78 м/с 2 .

    Вычисление ускорения по силе

    1. Второй закон Ньютона. Согласно второму закону Ньютона тело будет ускоряться, если силы, действующие на него, не уравновешивают друг друга. Такое ускорение зависит от результирующей силы, действующей на тело. Используя второй закон Ньютона, вы можете найти ускорение тела, если вам известна его масса и сила, действующая на это тело.

      • Второй закон Ньютона описывается формулой: F рез = m x a , где F рез – результирующая сила, действующая на тело, m – масса тела, a – ускорение тела.
      • Работая с этой формулой, используйте единицы измерения метрической системы, в которой масса измеряется в килограммах (кг), сила в ньютонах (Н), а ускорение в метрах в секунду за секунду (м/с 2).
    2. Найдите массу тела. Для этого положите тело на весы и найдите его массу в граммах. Если вы рассматриваете очень большое тело, поищите его массу в справочниках или в интернете. Масса больших тел измеряется в килограммах.

      • Для вычисления ускорения по приведенной формуле необходимо преобразовать граммы в килограммы. Разделите массу в граммах на 1000, чтобы получить массу в килограммах.
    3. Найдите результирующую силу, действующую на тело. Результирующая сила не уравновешивается другими силами. Если на тело действуют две разнонаправленные силы, причем одна из них больше другой, то направление результирующей силы совпадает с направлением большей силы. Ускорение возникает тогда, когда на тело действует сила, которая не уравновешена другими силами и которая приводит к изменению скорости тела в направлении действия этой силы.

      Преобразуйте формулу F = ma так, чтобы вычислить ускорение. Для этого разделите обе стороны этой формулы на m (массу) и получите: a = F/m. Таким образом, для нахождения ускорения разделите силу на массу ускоряющегося тела.

      • Сила прямо пропорциональна ускорению, то есть чем больше сила, действующая на тело, тем быстрее оно ускоряется.
      • Масса обратно пропорциональна ускорению, то есть чем больше масса тела, тем медленнее оно ускоряется.
    4. Вычислите ускорение по полученной формуле. Ускорение равно частному от деления результирующей силы, действующей на тело, на его массу. Подставьте данные вам значения в эту формулу, чтобы вычислить ускорение тела.

      • Например: сила, равная 10 Н, действует на тело массой 2 кг. Найдите ускорение тела.
      • a = F/m = 10/2 = 5 м/с 2

    Проверка ваших знаний

    1. Направление ускорения. Научная концепция ускорения не всегда совпадает с использованием этой величины в повседневной жизни. Помните, что у ускорения есть направление; ускорение имеет положительное значение, если оно направлено вверх или вправо; ускорение имеет отрицательное значение, если оно направлено вниз или влево. Проверьте правильность вашего решения, основываясь на следующей таблице:

    2. Пример: игрушечная лодка массой 10 кг движется на север с ускорением 2 м/с 2 . Ветер, дующий в западном направлении, действует на лодку с силой 100 Н. Найдите ускорение лодки в северном направлении.
    3. Решение: так как сила перпендикулярна направлению движения, то она не влияет на движение в этом направлении. Поэтому ускорение лодки в северном направлении не изменится и будет равно 2 м/с 2 .
  2. Результирующая сила. Если на тело действуют сразу несколько сил, найдите результирующую силу, а затем приступайте к вычислению ускорения. Рассмотрим следующую задачу (в двумерном пространстве):

    • Владимир тянет (справа) контейнер массой 400 кг с силой 150 Н. Дмитрий толкает (слева) контейнер с силой 200 Н. Ветер дует справа налево и действует на контейнер с силой 10 Н. Найдите ускорение контейнера.
    • Решение: условие этой задачи составлено так, чтобы запутать вас. На самом деле все очень просто. Нарисуйте схему направления сил, так вы увидите, что сила в 150 Н направлена вправо, сила в 200 Н тоже направлена вправо, а вот сила в 10 Н направлена влево. Таким образом, результирующая сила равна: 150 + 200 - 10 = 340 Н. Ускорение равно: a = F/m = 340/400 = 0,85 м/с 2 .

Термин «ускорение» один из немногих, смысл которого понятен тем, кто говорит по-русски. Он обозначает величину, которой измеряют вектор скорости точки по ее направлению и числовому значению. Ускорение зависит от приложенной к этой точке силы, оно прямо пропорционально ей, но обратно пропорционально массе этой самой точки. Вот основные критерии того, как найти ускорение.

Исходить следует из того, где именно применяется ускорение. Напомним, что оно обозначается как «а». В интернациональной системе единиц принято считать единицей ускорения величину, которая состоит из показателя 1 м/с 2 (метр на секунду в квадрате): ускорение, при котором за каждую секунду скорость тела изменяется на 1 м в секунду (1м/с). Допустим, ускорение тела составляет 10м/ с 2 . Значит, в течение каждой секунды, его скорость изменяется на 10 м/с. Что в 10 раз быстрее, если бы ускорение было 1м/с 2 . Другими словами, скорость означает физическую величину, характеризующую путь, пройденный телом, за определенное время.

Отвечая на вопрос о том, как находить ускорение, надо знать путь движение тела, его траекторию – прямолинейная или криволинейная, и скорость – равномерная или неравномерная. Относительно последней характеристики. т.е. скорости, необходимо помнить, что она может меняться векторно или по модулю, тем самым, придавая движению тела ускорение.

Зачем нужна формула ускорения

Вот пример того, как найти ускорение по скорости, если тело начинает равноускоренное движение: необходимо разделить изменение скорости на тот отрезок времени, в течение которого и произошло изменение скорости. Поможет решить задачу, как найти ускорение, формула ускорения a = (v -v0) / ?t = ?v / ?t, где начальная скорость тела v0, конечная– v, промежуток времени - ?t.

На конкретном примере это выглядит следующим образом: допустим, автомобиль начинает движение, трогаясь с места, и за 7 секунд набирает скорость 98 м/с. Используя вышеприведенную формулу, определяется ускорение автомобиля, т.е. взяв исходные данные v= 98 м/с,v0 = 0, ?t =7с, надо найти, чему равна а. Вот ответ: a=(v-v0)/ ?t =(98м/с – 0м/с)/7с = 14 м/с 2 . Получаем 14 м/с 2 .

Поиск ускорения свободного падения

А как найти ускорение свободного падения? Сам принцип поиска хорошо виден на таком примере. Достаточно взять металлический тело, т.е. предмет из металла, закрепить его на высоте, которую можно измерить в метрах, причем, при выборе высоты надо учитывать сопротивление воздуха, причем, такое, которым можно пренебречь. Оптимально это высота 2-4 м. Внизу должна быть установлена платформа, специально под этот предмет. Теперь можно отсоединить металлическое тело от кронштейна. Естественно, оно начнет свободное падение. Зафиксировать время приземления тела необходимо в секундах. Все, можно найти ускорение предмета в свободном падении. Для этого заданную высоту надо разделить на время полета тела. Только это время необходимо взять во второй степени. Полученный результат следует умножить на 2. Это и будет ускорение, точнее – значение ускорения тела в свободном падении, выраженное в м/с 2 .

Можно определить ускорение свободного падения, используя силу тяжести. Измерив весами массу тела в кг, соблюдая предельную точность, подвесить затем это тело на динамометре. Полученный результат силы тяжести будет в ньютонах. Разделив значение силы тяжести на массу тела, которое только что подвешивалось на динамометр, получится ускорение свободного падения.

Ускорение определяет маятник

Поможет установить ускорение свободного падения и математический маятник. Он представляет собой тело, закрепленное и подвешенное на нити достаточной длины, которая заранее измерена. Теперь надо привести маятник в состояние колебания. И с помощью секундомера сосчитать количество колебаний за определенное время. Затем разделить это зафиксированное количество колебаний на время (оно – в секундах). Число, полученное после деления, возвести во вторую степень, умножить на длину нити маятника и число 39,48. Результат: определилось ускорение свободного падения.

Приборы для измерения ускорения

Логично завершить этот информационный блок об ускорении тем, что измеряется оно специальными приборами: акселерометрами. Они бывают механические, электромеханические, электрические и оптические. Диапазон, который им под силу, - от 1 см/с 2 до 30 км/с 2 , что означает O,OOlg - 3000g.Если воспользоваться вторым законом Ньютона, вычислить ускорение можно нахождением частного от деления силы F, действующей на точку, на ее массу m: а=F/m.

Перемеще́ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещениемназывают вектор, характеризующий это изменение. Обладает свойством аддитивности.

Ско́рость (часто обозначается , от англ. velocity или фр. vitesse) - векторная физическая величина, характеризующая быстротуперемещения и направления движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость).

Ускоре́ние (обычно обозначается , в теоретической механике ) - производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

    Сила. Масса. Законы Ньютона.

Си́ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.

Ма́сса (от греч. μάζα) - скалярная физическая величина, одна из важнейших величин в физике. Первоначально (XVII-XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства - вес. Тесно связана с понятиями «энергия» и «импульс» (по современным представлениям - масса эквивалентна энергии покоя).

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

Третий закон Ньютона

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

    Импульс. Закон сохранения импульса. Упругие и неупругие удары.

И́мпульс (Количество движения) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

4. Виды механической энергии. Работа. Мощность. Закон сохранения энергии.

В механике различают два вида энергии: кинетическую и потенциальную.

Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (E n = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы.

Так, для груза весом P, поднятого на высоту h, потенциальная энергия будет равна E n = Ph (E n = 0 при h = 0); для груза, прикрепленного к пружине, E n = kΔl 2 / 2, где Δl - удлинение (сжатие) пружины, k – ее коэффициент жесткости (E n = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (E n = 0 при r → ∞).

Термин "работа" в механике имеет два смысла: работа как процесс, при котором сила перемещает тело, действуя под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением:

Работа равна нулю, когда тело движется по инерции (F = 0), когда нет перемещения (s = 0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж).

1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия силы. Для определения быстроты совершения работы вводят величину "мощность".

Мо́щность - физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени :

и мгновенную мощность в данный момент времени:

Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.

В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Зако́н сохране́ния эне́ргии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системыможет быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.



Последние материалы раздела:

Сколько в одном метре километров Чему равен 1 км в метрах
Сколько в одном метре километров Чему равен 1 км в метрах

квадратный километр - — Тематики нефтегазовая промышленность EN square kilometersq.km … квадратный километр - мера площадей метрической системы...

Читы на GTA: San-Andreas для андроид
Читы на GTA: San-Andreas для андроид

Все коды на GTA San Andreas на Андроид, которые дадут вам бессмертность, бесконечные патроны, неуязвимость, выносливость, новые машины, парашют,...

Классическая механика Закон сохранения энергии
Классическая механика Закон сохранения энергии

Определение Механикой называется часть физики, изучающая движение и взаимодействие материальных тел. При этом механическое движение...